This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Onto functions define dominance when a finite number of choices need to be made. (Contributed by Stefan O'Rear, 28-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fodomfi2 | |- ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) -> B ~<_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofn | |- ( F : A -onto-> B -> F Fn A ) |
|
| 2 | 1 | 3ad2ant3 | |- ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) -> F Fn A ) |
| 3 | forn | |- ( F : A -onto-> B -> ran F = B ) |
|
| 4 | eqimss2 | |- ( ran F = B -> B C_ ran F ) |
|
| 5 | 3 4 | syl | |- ( F : A -onto-> B -> B C_ ran F ) |
| 6 | 5 | 3ad2ant3 | |- ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) -> B C_ ran F ) |
| 7 | simp2 | |- ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) -> B e. Fin ) |
|
| 8 | fipreima | |- ( ( F Fn A /\ B C_ ran F /\ B e. Fin ) -> E. x e. ( ~P A i^i Fin ) ( F " x ) = B ) |
|
| 9 | 2 6 7 8 | syl3anc | |- ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) -> E. x e. ( ~P A i^i Fin ) ( F " x ) = B ) |
| 10 | elinel2 | |- ( x e. ( ~P A i^i Fin ) -> x e. Fin ) |
|
| 11 | 10 | adantl | |- ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> x e. Fin ) |
| 12 | finnum | |- ( x e. Fin -> x e. dom card ) |
|
| 13 | 11 12 | syl | |- ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> x e. dom card ) |
| 14 | simpl3 | |- ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> F : A -onto-> B ) |
|
| 15 | fofun | |- ( F : A -onto-> B -> Fun F ) |
|
| 16 | 14 15 | syl | |- ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> Fun F ) |
| 17 | elinel1 | |- ( x e. ( ~P A i^i Fin ) -> x e. ~P A ) |
|
| 18 | 17 | elpwid | |- ( x e. ( ~P A i^i Fin ) -> x C_ A ) |
| 19 | 18 | adantl | |- ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> x C_ A ) |
| 20 | fof | |- ( F : A -onto-> B -> F : A --> B ) |
|
| 21 | fdm | |- ( F : A --> B -> dom F = A ) |
|
| 22 | 14 20 21 | 3syl | |- ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> dom F = A ) |
| 23 | 19 22 | sseqtrrd | |- ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> x C_ dom F ) |
| 24 | fores | |- ( ( Fun F /\ x C_ dom F ) -> ( F |` x ) : x -onto-> ( F " x ) ) |
|
| 25 | 16 23 24 | syl2anc | |- ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> ( F |` x ) : x -onto-> ( F " x ) ) |
| 26 | fodomnum | |- ( x e. dom card -> ( ( F |` x ) : x -onto-> ( F " x ) -> ( F " x ) ~<_ x ) ) |
|
| 27 | 13 25 26 | sylc | |- ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> ( F " x ) ~<_ x ) |
| 28 | simpl1 | |- ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> A e. V ) |
|
| 29 | ssdomg | |- ( A e. V -> ( x C_ A -> x ~<_ A ) ) |
|
| 30 | 28 19 29 | sylc | |- ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> x ~<_ A ) |
| 31 | domtr | |- ( ( ( F " x ) ~<_ x /\ x ~<_ A ) -> ( F " x ) ~<_ A ) |
|
| 32 | 27 30 31 | syl2anc | |- ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> ( F " x ) ~<_ A ) |
| 33 | breq1 | |- ( ( F " x ) = B -> ( ( F " x ) ~<_ A <-> B ~<_ A ) ) |
|
| 34 | 32 33 | syl5ibcom | |- ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> ( ( F " x ) = B -> B ~<_ A ) ) |
| 35 | 34 | rexlimdva | |- ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) -> ( E. x e. ( ~P A i^i Fin ) ( F " x ) = B -> B ~<_ A ) ) |
| 36 | 9 35 | mpd | |- ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) -> B ~<_ A ) |