This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 30-Jan-2004) (Proof shortened by Mario Carneiro, 4-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fnopabg.1 | ⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
| Assertion | fnopabg | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝜑 ↔ 𝐹 Fn 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnopabg.1 | ⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
| 2 | moanimv | ⊢ ( ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 → ∃* 𝑦 𝜑 ) ) | |
| 3 | 2 | albii | ⊢ ( ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃* 𝑦 𝜑 ) ) |
| 4 | funopab | ⊢ ( Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ↔ ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 5 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃* 𝑦 𝜑 ) ) | |
| 6 | 3 4 5 | 3bitr4ri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 𝜑 ↔ Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ) |
| 7 | dmopab3 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝜑 ↔ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = 𝐴 ) | |
| 8 | 6 7 | anbi12i | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝜑 ) ↔ ( Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∧ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = 𝐴 ) ) |
| 9 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∃* 𝑦 𝜑 ∧ ∃ 𝑦 𝜑 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝜑 ) ) | |
| 10 | df-fn | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } Fn 𝐴 ↔ ( Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∧ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = 𝐴 ) ) | |
| 11 | 8 9 10 | 3bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∃* 𝑦 𝜑 ∧ ∃ 𝑦 𝜑 ) ↔ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } Fn 𝐴 ) |
| 12 | df-eu | ⊢ ( ∃! 𝑦 𝜑 ↔ ( ∃ 𝑦 𝜑 ∧ ∃* 𝑦 𝜑 ) ) | |
| 13 | 12 | biancomi | ⊢ ( ∃! 𝑦 𝜑 ↔ ( ∃* 𝑦 𝜑 ∧ ∃ 𝑦 𝜑 ) ) |
| 14 | 13 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ( ∃* 𝑦 𝜑 ∧ ∃ 𝑦 𝜑 ) ) |
| 15 | 1 | fneq1i | ⊢ ( 𝐹 Fn 𝐴 ↔ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } Fn 𝐴 ) |
| 16 | 11 14 15 | 3bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝜑 ↔ 𝐹 Fn 𝐴 ) |