This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmopab3 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝜑 ↔ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃ 𝑦 𝜑 ) ) | |
| 2 | pm4.71 | ⊢ ( ( 𝑥 ∈ 𝐴 → ∃ 𝑦 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) ) ) | |
| 3 | 2 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃ 𝑦 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) ) ) |
| 4 | dmopab | ⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
| 5 | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) ) | |
| 6 | 5 | abbii | ⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) } |
| 7 | 4 6 | eqtri | ⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) } |
| 8 | 7 | eqeq1i | ⊢ ( dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = 𝐴 ↔ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) } = 𝐴 ) |
| 9 | eqcom | ⊢ ( 𝐴 = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) } ↔ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) } = 𝐴 ) | |
| 10 | eqabb | ⊢ ( 𝐴 = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) ) ) | |
| 11 | 8 9 10 | 3bitr2ri | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝜑 ) ) ↔ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = 𝐴 ) |
| 12 | 1 3 11 | 3bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝜑 ↔ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = 𝐴 ) |