This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 30-Jan-2004) (Proof shortened by Mario Carneiro, 4-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fnopabg.1 | |- F = { <. x , y >. | ( x e. A /\ ph ) } |
|
| Assertion | fnopabg | |- ( A. x e. A E! y ph <-> F Fn A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnopabg.1 | |- F = { <. x , y >. | ( x e. A /\ ph ) } |
|
| 2 | moanimv | |- ( E* y ( x e. A /\ ph ) <-> ( x e. A -> E* y ph ) ) |
|
| 3 | 2 | albii | |- ( A. x E* y ( x e. A /\ ph ) <-> A. x ( x e. A -> E* y ph ) ) |
| 4 | funopab | |- ( Fun { <. x , y >. | ( x e. A /\ ph ) } <-> A. x E* y ( x e. A /\ ph ) ) |
|
| 5 | df-ral | |- ( A. x e. A E* y ph <-> A. x ( x e. A -> E* y ph ) ) |
|
| 6 | 3 4 5 | 3bitr4ri | |- ( A. x e. A E* y ph <-> Fun { <. x , y >. | ( x e. A /\ ph ) } ) |
| 7 | dmopab3 | |- ( A. x e. A E. y ph <-> dom { <. x , y >. | ( x e. A /\ ph ) } = A ) |
|
| 8 | 6 7 | anbi12i | |- ( ( A. x e. A E* y ph /\ A. x e. A E. y ph ) <-> ( Fun { <. x , y >. | ( x e. A /\ ph ) } /\ dom { <. x , y >. | ( x e. A /\ ph ) } = A ) ) |
| 9 | r19.26 | |- ( A. x e. A ( E* y ph /\ E. y ph ) <-> ( A. x e. A E* y ph /\ A. x e. A E. y ph ) ) |
|
| 10 | df-fn | |- ( { <. x , y >. | ( x e. A /\ ph ) } Fn A <-> ( Fun { <. x , y >. | ( x e. A /\ ph ) } /\ dom { <. x , y >. | ( x e. A /\ ph ) } = A ) ) |
|
| 11 | 8 9 10 | 3bitr4i | |- ( A. x e. A ( E* y ph /\ E. y ph ) <-> { <. x , y >. | ( x e. A /\ ph ) } Fn A ) |
| 12 | df-eu | |- ( E! y ph <-> ( E. y ph /\ E* y ph ) ) |
|
| 13 | 12 | biancomi | |- ( E! y ph <-> ( E* y ph /\ E. y ph ) ) |
| 14 | 13 | ralbii | |- ( A. x e. A E! y ph <-> A. x e. A ( E* y ph /\ E. y ph ) ) |
| 15 | 1 | fneq1i | |- ( F Fn A <-> { <. x , y >. | ( x e. A /\ ph ) } Fn A ) |
| 16 | 11 14 15 | 3bitr4i | |- ( A. x e. A E! y ph <-> F Fn A ) |