This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The filter map applied to the identity. (Contributed by Jeff Hankins, 8-Nov-2009) (Revised by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fmid | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑋 FilMap ( I ↾ 𝑋 ) ) ‘ 𝐹 ) = 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filfbas | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) | |
| 2 | f1oi | ⊢ ( I ↾ 𝑋 ) : 𝑋 –1-1-onto→ 𝑋 | |
| 3 | f1ofo | ⊢ ( ( I ↾ 𝑋 ) : 𝑋 –1-1-onto→ 𝑋 → ( I ↾ 𝑋 ) : 𝑋 –onto→ 𝑋 ) | |
| 4 | 2 3 | ax-mp | ⊢ ( I ↾ 𝑋 ) : 𝑋 –onto→ 𝑋 |
| 5 | eqid | ⊢ ( 𝑋 filGen 𝐹 ) = ( 𝑋 filGen 𝐹 ) | |
| 6 | 5 | elfm3 | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ( I ↾ 𝑋 ) : 𝑋 –onto→ 𝑋 ) → ( 𝑡 ∈ ( ( 𝑋 FilMap ( I ↾ 𝑋 ) ) ‘ 𝐹 ) ↔ ∃ 𝑠 ∈ ( 𝑋 filGen 𝐹 ) 𝑡 = ( ( I ↾ 𝑋 ) “ 𝑠 ) ) ) |
| 7 | 1 4 6 | sylancl | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑡 ∈ ( ( 𝑋 FilMap ( I ↾ 𝑋 ) ) ‘ 𝐹 ) ↔ ∃ 𝑠 ∈ ( 𝑋 filGen 𝐹 ) 𝑡 = ( ( I ↾ 𝑋 ) “ 𝑠 ) ) ) |
| 8 | fgfil | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) = 𝐹 ) | |
| 9 | 8 | rexeqdv | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∃ 𝑠 ∈ ( 𝑋 filGen 𝐹 ) 𝑡 = ( ( I ↾ 𝑋 ) “ 𝑠 ) ↔ ∃ 𝑠 ∈ 𝐹 𝑡 = ( ( I ↾ 𝑋 ) “ 𝑠 ) ) ) |
| 10 | filelss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑠 ∈ 𝐹 ) → 𝑠 ⊆ 𝑋 ) | |
| 11 | resiima | ⊢ ( 𝑠 ⊆ 𝑋 → ( ( I ↾ 𝑋 ) “ 𝑠 ) = 𝑠 ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑠 ∈ 𝐹 ) → ( ( I ↾ 𝑋 ) “ 𝑠 ) = 𝑠 ) |
| 13 | 12 | eqeq2d | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑠 ∈ 𝐹 ) → ( 𝑡 = ( ( I ↾ 𝑋 ) “ 𝑠 ) ↔ 𝑡 = 𝑠 ) ) |
| 14 | equcom | ⊢ ( 𝑠 = 𝑡 ↔ 𝑡 = 𝑠 ) | |
| 15 | 13 14 | bitr4di | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑠 ∈ 𝐹 ) → ( 𝑡 = ( ( I ↾ 𝑋 ) “ 𝑠 ) ↔ 𝑠 = 𝑡 ) ) |
| 16 | 15 | rexbidva | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∃ 𝑠 ∈ 𝐹 𝑡 = ( ( I ↾ 𝑋 ) “ 𝑠 ) ↔ ∃ 𝑠 ∈ 𝐹 𝑠 = 𝑡 ) ) |
| 17 | risset | ⊢ ( 𝑡 ∈ 𝐹 ↔ ∃ 𝑠 ∈ 𝐹 𝑠 = 𝑡 ) | |
| 18 | 16 17 | bitr4di | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∃ 𝑠 ∈ 𝐹 𝑡 = ( ( I ↾ 𝑋 ) “ 𝑠 ) ↔ 𝑡 ∈ 𝐹 ) ) |
| 19 | 7 9 18 | 3bitrd | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑡 ∈ ( ( 𝑋 FilMap ( I ↾ 𝑋 ) ) ‘ 𝐹 ) ↔ 𝑡 ∈ 𝐹 ) ) |
| 20 | 19 | eqrdv | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑋 FilMap ( I ↾ 𝑋 ) ) ‘ 𝐹 ) = 𝐹 ) |