This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The filter map applied to the identity. (Contributed by Jeff Hankins, 8-Nov-2009) (Revised by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fmid | |- ( F e. ( Fil ` X ) -> ( ( X FilMap ( _I |` X ) ) ` F ) = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filfbas | |- ( F e. ( Fil ` X ) -> F e. ( fBas ` X ) ) |
|
| 2 | f1oi | |- ( _I |` X ) : X -1-1-onto-> X |
|
| 3 | f1ofo | |- ( ( _I |` X ) : X -1-1-onto-> X -> ( _I |` X ) : X -onto-> X ) |
|
| 4 | 2 3 | ax-mp | |- ( _I |` X ) : X -onto-> X |
| 5 | eqid | |- ( X filGen F ) = ( X filGen F ) |
|
| 6 | 5 | elfm3 | |- ( ( F e. ( fBas ` X ) /\ ( _I |` X ) : X -onto-> X ) -> ( t e. ( ( X FilMap ( _I |` X ) ) ` F ) <-> E. s e. ( X filGen F ) t = ( ( _I |` X ) " s ) ) ) |
| 7 | 1 4 6 | sylancl | |- ( F e. ( Fil ` X ) -> ( t e. ( ( X FilMap ( _I |` X ) ) ` F ) <-> E. s e. ( X filGen F ) t = ( ( _I |` X ) " s ) ) ) |
| 8 | fgfil | |- ( F e. ( Fil ` X ) -> ( X filGen F ) = F ) |
|
| 9 | 8 | rexeqdv | |- ( F e. ( Fil ` X ) -> ( E. s e. ( X filGen F ) t = ( ( _I |` X ) " s ) <-> E. s e. F t = ( ( _I |` X ) " s ) ) ) |
| 10 | filelss | |- ( ( F e. ( Fil ` X ) /\ s e. F ) -> s C_ X ) |
|
| 11 | resiima | |- ( s C_ X -> ( ( _I |` X ) " s ) = s ) |
|
| 12 | 10 11 | syl | |- ( ( F e. ( Fil ` X ) /\ s e. F ) -> ( ( _I |` X ) " s ) = s ) |
| 13 | 12 | eqeq2d | |- ( ( F e. ( Fil ` X ) /\ s e. F ) -> ( t = ( ( _I |` X ) " s ) <-> t = s ) ) |
| 14 | equcom | |- ( s = t <-> t = s ) |
|
| 15 | 13 14 | bitr4di | |- ( ( F e. ( Fil ` X ) /\ s e. F ) -> ( t = ( ( _I |` X ) " s ) <-> s = t ) ) |
| 16 | 15 | rexbidva | |- ( F e. ( Fil ` X ) -> ( E. s e. F t = ( ( _I |` X ) " s ) <-> E. s e. F s = t ) ) |
| 17 | risset | |- ( t e. F <-> E. s e. F s = t ) |
|
| 18 | 16 17 | bitr4di | |- ( F e. ( Fil ` X ) -> ( E. s e. F t = ( ( _I |` X ) " s ) <-> t e. F ) ) |
| 19 | 7 9 18 | 3bitrd | |- ( F e. ( Fil ` X ) -> ( t e. ( ( X FilMap ( _I |` X ) ) ` F ) <-> t e. F ) ) |
| 20 | 19 | eqrdv | |- ( F e. ( Fil ` X ) -> ( ( X FilMap ( _I |` X ) ) ` F ) = F ) |