This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate way to define the floor function, as the supremum of all integers less than or equal to its argument. (Contributed by NM, 15-Nov-2004) (Proof shortened by Mario Carneiro, 6-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flval3 | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) = sup ( { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } , ℝ , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 | ⊢ { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } ⊆ ℤ | |
| 2 | zssre | ⊢ ℤ ⊆ ℝ | |
| 3 | 1 2 | sstri | ⊢ { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } ⊆ ℝ |
| 4 | 3 | a1i | ⊢ ( 𝐴 ∈ ℝ → { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } ⊆ ℝ ) |
| 5 | breq1 | ⊢ ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( 𝑥 ≤ 𝐴 ↔ ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) ) | |
| 6 | flcl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) | |
| 7 | flle | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) | |
| 8 | 5 6 7 | elrabd | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } ) |
| 9 | 8 | ne0d | ⊢ ( 𝐴 ∈ ℝ → { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } ≠ ∅ ) |
| 10 | reflcl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) | |
| 11 | breq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≤ 𝐴 ↔ 𝑧 ≤ 𝐴 ) ) | |
| 12 | 11 | elrab | ⊢ ( 𝑧 ∈ { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } ↔ ( 𝑧 ∈ ℤ ∧ 𝑧 ≤ 𝐴 ) ) |
| 13 | flge | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ ) → ( 𝑧 ≤ 𝐴 ↔ 𝑧 ≤ ( ⌊ ‘ 𝐴 ) ) ) | |
| 14 | 13 | biimpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ ) → ( 𝑧 ≤ 𝐴 → 𝑧 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
| 15 | 14 | expimpd | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝑧 ∈ ℤ ∧ 𝑧 ≤ 𝐴 ) → 𝑧 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
| 16 | 12 15 | biimtrid | ⊢ ( 𝐴 ∈ ℝ → ( 𝑧 ∈ { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } → 𝑧 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
| 17 | 16 | ralrimiv | ⊢ ( 𝐴 ∈ ℝ → ∀ 𝑧 ∈ { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } 𝑧 ≤ ( ⌊ ‘ 𝐴 ) ) |
| 18 | brralrspcev | ⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℝ ∧ ∀ 𝑧 ∈ { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } 𝑧 ≤ ( ⌊ ‘ 𝐴 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } 𝑧 ≤ 𝑦 ) | |
| 19 | 10 17 18 | syl2anc | ⊢ ( 𝐴 ∈ ℝ → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } 𝑧 ≤ 𝑦 ) |
| 20 | 4 9 19 8 | suprubd | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ≤ sup ( { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } , ℝ , < ) ) |
| 21 | suprleub | ⊢ ( ( ( { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } ⊆ ℝ ∧ { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } 𝑧 ≤ 𝑦 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ℝ ) → ( sup ( { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } , ℝ , < ) ≤ ( ⌊ ‘ 𝐴 ) ↔ ∀ 𝑧 ∈ { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } 𝑧 ≤ ( ⌊ ‘ 𝐴 ) ) ) | |
| 22 | 4 9 19 10 21 | syl31anc | ⊢ ( 𝐴 ∈ ℝ → ( sup ( { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } , ℝ , < ) ≤ ( ⌊ ‘ 𝐴 ) ↔ ∀ 𝑧 ∈ { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } 𝑧 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
| 23 | 17 22 | mpbird | ⊢ ( 𝐴 ∈ ℝ → sup ( { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } , ℝ , < ) ≤ ( ⌊ ‘ 𝐴 ) ) |
| 24 | 4 9 19 | suprcld | ⊢ ( 𝐴 ∈ ℝ → sup ( { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } , ℝ , < ) ∈ ℝ ) |
| 25 | 10 24 | letri3d | ⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) = sup ( { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } , ℝ , < ) ↔ ( ( ⌊ ‘ 𝐴 ) ≤ sup ( { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } , ℝ , < ) ∧ sup ( { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } , ℝ , < ) ≤ ( ⌊ ‘ 𝐴 ) ) ) ) |
| 26 | 20 23 25 | mpbir2and | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) = sup ( { 𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴 } , ℝ , < ) ) |