This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate way to define the floor function. (Contributed by NM, 16-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flval2 | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flle | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) | |
| 2 | flge | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑦 ∈ ℤ ) → ( 𝑦 ≤ 𝐴 ↔ 𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) ) | |
| 3 | 2 | biimpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑦 ∈ ℤ ) → ( 𝑦 ≤ 𝐴 → 𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
| 4 | 3 | ralrimiva | ⊢ ( 𝐴 ∈ ℝ → ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
| 5 | flcl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) | |
| 6 | zmax | ⊢ ( 𝐴 ∈ ℝ → ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) | |
| 7 | breq1 | ⊢ ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( 𝑥 ≤ 𝐴 ↔ ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) ) | |
| 8 | breq2 | ⊢ ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( 𝑦 ≤ 𝑥 ↔ 𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) ) | |
| 9 | 8 | imbi2d | ⊢ ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ↔ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) ) ) |
| 10 | 9 | ralbidv | ⊢ ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ↔ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) ) ) |
| 11 | 7 10 | anbi12d | ⊢ ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( ( 𝑥 ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ↔ ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) ) ) ) |
| 12 | 11 | riota2 | ⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) = ( ⌊ ‘ 𝐴 ) ) ) |
| 13 | 5 6 12 | syl2anc | ⊢ ( 𝐴 ∈ ℝ → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) = ( ⌊ ‘ 𝐴 ) ) ) |
| 14 | 1 4 13 | mpbi2and | ⊢ ( 𝐴 ∈ ℝ → ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) = ( ⌊ ‘ 𝐴 ) ) |
| 15 | 14 | eqcomd | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) ) |