This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of limit points of a filter. (Contributed by Jeff Hankins, 4-Sep-2009) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | flimval.1 | |- X = U. J |
|
| Assertion | flimval | |- ( ( J e. Top /\ F e. U. ran Fil ) -> ( J fLim F ) = { x e. X | ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flimval.1 | |- X = U. J |
|
| 2 | 1 | topopn | |- ( J e. Top -> X e. J ) |
| 3 | 2 | adantr | |- ( ( J e. Top /\ F e. U. ran Fil ) -> X e. J ) |
| 4 | rabexg | |- ( X e. J -> { x e. X | ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) } e. _V ) |
|
| 5 | 3 4 | syl | |- ( ( J e. Top /\ F e. U. ran Fil ) -> { x e. X | ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) } e. _V ) |
| 6 | simpl | |- ( ( j = J /\ f = F ) -> j = J ) |
|
| 7 | 6 | unieqd | |- ( ( j = J /\ f = F ) -> U. j = U. J ) |
| 8 | 7 1 | eqtr4di | |- ( ( j = J /\ f = F ) -> U. j = X ) |
| 9 | 6 | fveq2d | |- ( ( j = J /\ f = F ) -> ( nei ` j ) = ( nei ` J ) ) |
| 10 | 9 | fveq1d | |- ( ( j = J /\ f = F ) -> ( ( nei ` j ) ` { x } ) = ( ( nei ` J ) ` { x } ) ) |
| 11 | simpr | |- ( ( j = J /\ f = F ) -> f = F ) |
|
| 12 | 10 11 | sseq12d | |- ( ( j = J /\ f = F ) -> ( ( ( nei ` j ) ` { x } ) C_ f <-> ( ( nei ` J ) ` { x } ) C_ F ) ) |
| 13 | 8 | pweqd | |- ( ( j = J /\ f = F ) -> ~P U. j = ~P X ) |
| 14 | 11 13 | sseq12d | |- ( ( j = J /\ f = F ) -> ( f C_ ~P U. j <-> F C_ ~P X ) ) |
| 15 | 12 14 | anbi12d | |- ( ( j = J /\ f = F ) -> ( ( ( ( nei ` j ) ` { x } ) C_ f /\ f C_ ~P U. j ) <-> ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) ) ) |
| 16 | 8 15 | rabeqbidv | |- ( ( j = J /\ f = F ) -> { x e. U. j | ( ( ( nei ` j ) ` { x } ) C_ f /\ f C_ ~P U. j ) } = { x e. X | ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) } ) |
| 17 | df-flim | |- fLim = ( j e. Top , f e. U. ran Fil |-> { x e. U. j | ( ( ( nei ` j ) ` { x } ) C_ f /\ f C_ ~P U. j ) } ) |
|
| 18 | 16 17 | ovmpoga | |- ( ( J e. Top /\ F e. U. ran Fil /\ { x e. X | ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) } e. _V ) -> ( J fLim F ) = { x e. X | ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) } ) |
| 19 | 5 18 | mpd3an3 | |- ( ( J e. Top /\ F e. U. ran Fil ) -> ( J fLim F ) = { x e. X | ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) } ) |