This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A limit point of a filter is a limit point of a finer filter. (Contributed by Jeff Hankins, 5-Sep-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flimss2 | |- ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ G C_ F ) -> ( J fLim G ) C_ ( J fLim F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- U. J = U. J |
|
| 2 | 1 | flimelbas | |- ( x e. ( J fLim G ) -> x e. U. J ) |
| 3 | 2 | adantl | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ G C_ F ) /\ x e. ( J fLim G ) ) -> x e. U. J ) |
| 4 | simpl1 | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ G C_ F ) /\ x e. ( J fLim G ) ) -> J e. ( TopOn ` X ) ) |
|
| 5 | toponuni | |- ( J e. ( TopOn ` X ) -> X = U. J ) |
|
| 6 | 4 5 | syl | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ G C_ F ) /\ x e. ( J fLim G ) ) -> X = U. J ) |
| 7 | 3 6 | eleqtrrd | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ G C_ F ) /\ x e. ( J fLim G ) ) -> x e. X ) |
| 8 | flimneiss | |- ( x e. ( J fLim G ) -> ( ( nei ` J ) ` { x } ) C_ G ) |
|
| 9 | 8 | adantl | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ G C_ F ) /\ x e. ( J fLim G ) ) -> ( ( nei ` J ) ` { x } ) C_ G ) |
| 10 | simpl3 | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ G C_ F ) /\ x e. ( J fLim G ) ) -> G C_ F ) |
|
| 11 | 9 10 | sstrd | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ G C_ F ) /\ x e. ( J fLim G ) ) -> ( ( nei ` J ) ` { x } ) C_ F ) |
| 12 | simpl2 | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ G C_ F ) /\ x e. ( J fLim G ) ) -> F e. ( Fil ` X ) ) |
|
| 13 | elflim | |- ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) ) -> ( x e. ( J fLim F ) <-> ( x e. X /\ ( ( nei ` J ) ` { x } ) C_ F ) ) ) |
|
| 14 | 4 12 13 | syl2anc | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ G C_ F ) /\ x e. ( J fLim G ) ) -> ( x e. ( J fLim F ) <-> ( x e. X /\ ( ( nei ` J ) ` { x } ) C_ F ) ) ) |
| 15 | 7 11 14 | mpbir2and | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ G C_ F ) /\ x e. ( J fLim G ) ) -> x e. ( J fLim F ) ) |
| 16 | 15 | ex | |- ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ G C_ F ) -> ( x e. ( J fLim G ) -> x e. ( J fLim F ) ) ) |
| 17 | 16 | ssrdv | |- ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ G C_ F ) -> ( J fLim G ) C_ ( J fLim F ) ) |