This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition for a filter to converge to a point involving one of its bases. (Contributed by Jeff Hankins, 4-Sep-2009) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fbflim.3 | ⊢ 𝐹 = ( 𝑋 filGen 𝐵 ) | |
| Assertion | fbflim | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fbflim.3 | ⊢ 𝐹 = ( 𝑋 filGen 𝐵 ) | |
| 2 | fgcl | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen 𝐵 ) ∈ ( Fil ‘ 𝑋 ) ) | |
| 3 | 1 2 | eqeltrid | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 4 | flimopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) ) | |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) ) |
| 6 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ⊆ 𝑋 ) | |
| 7 | 6 | ad4ant14 | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ⊆ 𝑋 ) |
| 8 | 1 | eleq2i | ⊢ ( 𝑥 ∈ 𝐹 ↔ 𝑥 ∈ ( 𝑋 filGen 𝐵 ) ) |
| 9 | elfg | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ( 𝑥 ∈ ( 𝑋 filGen 𝐵 ) ↔ ( 𝑥 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 ) ) ) | |
| 10 | 9 | ad3antlr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐽 ) → ( 𝑥 ∈ ( 𝑋 filGen 𝐵 ) ↔ ( 𝑥 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 ) ) ) |
| 11 | 8 10 | bitrid | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐽 ) → ( 𝑥 ∈ 𝐹 ↔ ( 𝑥 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 ) ) ) |
| 12 | 7 11 | mpbirand | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐽 ) → ( 𝑥 ∈ 𝐹 ↔ ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 ) ) |
| 13 | 12 | imbi2d | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐽 ) → ( ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) ↔ ( 𝐴 ∈ 𝑥 → ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 ) ) ) |
| 14 | 13 | ralbidva | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) ↔ ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 ) ) ) |
| 15 | 14 | pm5.32da | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → ( ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹 ) ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 ) ) ) ) |
| 16 | 5 15 | bitrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 → ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 ) ) ) ) |