This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every convergent filter in a metric space is a Cauchy filter. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lmcau.1 | |- J = ( MetOpen ` D ) |
|
| Assertion | flimcfil | |- ( ( D e. ( *Met ` X ) /\ A e. ( J fLim F ) ) -> F e. ( CauFil ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmcau.1 | |- J = ( MetOpen ` D ) |
|
| 2 | eqid | |- U. J = U. J |
|
| 3 | 2 | flimfil | |- ( A e. ( J fLim F ) -> F e. ( Fil ` U. J ) ) |
| 4 | 3 | adantl | |- ( ( D e. ( *Met ` X ) /\ A e. ( J fLim F ) ) -> F e. ( Fil ` U. J ) ) |
| 5 | 1 | mopnuni | |- ( D e. ( *Met ` X ) -> X = U. J ) |
| 6 | 5 | adantr | |- ( ( D e. ( *Met ` X ) /\ A e. ( J fLim F ) ) -> X = U. J ) |
| 7 | 6 | fveq2d | |- ( ( D e. ( *Met ` X ) /\ A e. ( J fLim F ) ) -> ( Fil ` X ) = ( Fil ` U. J ) ) |
| 8 | 4 7 | eleqtrrd | |- ( ( D e. ( *Met ` X ) /\ A e. ( J fLim F ) ) -> F e. ( Fil ` X ) ) |
| 9 | 2 | flimelbas | |- ( A e. ( J fLim F ) -> A e. U. J ) |
| 10 | 9 | ad2antlr | |- ( ( ( D e. ( *Met ` X ) /\ A e. ( J fLim F ) ) /\ x e. RR+ ) -> A e. U. J ) |
| 11 | 5 | ad2antrr | |- ( ( ( D e. ( *Met ` X ) /\ A e. ( J fLim F ) ) /\ x e. RR+ ) -> X = U. J ) |
| 12 | 10 11 | eleqtrrd | |- ( ( ( D e. ( *Met ` X ) /\ A e. ( J fLim F ) ) /\ x e. RR+ ) -> A e. X ) |
| 13 | simplr | |- ( ( ( D e. ( *Met ` X ) /\ A e. ( J fLim F ) ) /\ x e. RR+ ) -> A e. ( J fLim F ) ) |
|
| 14 | 1 | mopntop | |- ( D e. ( *Met ` X ) -> J e. Top ) |
| 15 | 14 | ad2antrr | |- ( ( ( D e. ( *Met ` X ) /\ A e. ( J fLim F ) ) /\ x e. RR+ ) -> J e. Top ) |
| 16 | simpll | |- ( ( ( D e. ( *Met ` X ) /\ A e. ( J fLim F ) ) /\ x e. RR+ ) -> D e. ( *Met ` X ) ) |
|
| 17 | rpxr | |- ( x e. RR+ -> x e. RR* ) |
|
| 18 | 17 | adantl | |- ( ( ( D e. ( *Met ` X ) /\ A e. ( J fLim F ) ) /\ x e. RR+ ) -> x e. RR* ) |
| 19 | 1 | blopn | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ x e. RR* ) -> ( A ( ball ` D ) x ) e. J ) |
| 20 | 16 12 18 19 | syl3anc | |- ( ( ( D e. ( *Met ` X ) /\ A e. ( J fLim F ) ) /\ x e. RR+ ) -> ( A ( ball ` D ) x ) e. J ) |
| 21 | simpr | |- ( ( ( D e. ( *Met ` X ) /\ A e. ( J fLim F ) ) /\ x e. RR+ ) -> x e. RR+ ) |
|
| 22 | blcntr | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ x e. RR+ ) -> A e. ( A ( ball ` D ) x ) ) |
|
| 23 | 16 12 21 22 | syl3anc | |- ( ( ( D e. ( *Met ` X ) /\ A e. ( J fLim F ) ) /\ x e. RR+ ) -> A e. ( A ( ball ` D ) x ) ) |
| 24 | opnneip | |- ( ( J e. Top /\ ( A ( ball ` D ) x ) e. J /\ A e. ( A ( ball ` D ) x ) ) -> ( A ( ball ` D ) x ) e. ( ( nei ` J ) ` { A } ) ) |
|
| 25 | 15 20 23 24 | syl3anc | |- ( ( ( D e. ( *Met ` X ) /\ A e. ( J fLim F ) ) /\ x e. RR+ ) -> ( A ( ball ` D ) x ) e. ( ( nei ` J ) ` { A } ) ) |
| 26 | flimnei | |- ( ( A e. ( J fLim F ) /\ ( A ( ball ` D ) x ) e. ( ( nei ` J ) ` { A } ) ) -> ( A ( ball ` D ) x ) e. F ) |
|
| 27 | 13 25 26 | syl2anc | |- ( ( ( D e. ( *Met ` X ) /\ A e. ( J fLim F ) ) /\ x e. RR+ ) -> ( A ( ball ` D ) x ) e. F ) |
| 28 | oveq1 | |- ( y = A -> ( y ( ball ` D ) x ) = ( A ( ball ` D ) x ) ) |
|
| 29 | 28 | eleq1d | |- ( y = A -> ( ( y ( ball ` D ) x ) e. F <-> ( A ( ball ` D ) x ) e. F ) ) |
| 30 | 29 | rspcev | |- ( ( A e. X /\ ( A ( ball ` D ) x ) e. F ) -> E. y e. X ( y ( ball ` D ) x ) e. F ) |
| 31 | 12 27 30 | syl2anc | |- ( ( ( D e. ( *Met ` X ) /\ A e. ( J fLim F ) ) /\ x e. RR+ ) -> E. y e. X ( y ( ball ` D ) x ) e. F ) |
| 32 | 31 | ralrimiva | |- ( ( D e. ( *Met ` X ) /\ A e. ( J fLim F ) ) -> A. x e. RR+ E. y e. X ( y ( ball ` D ) x ) e. F ) |
| 33 | iscfil3 | |- ( D e. ( *Met ` X ) -> ( F e. ( CauFil ` D ) <-> ( F e. ( Fil ` X ) /\ A. x e. RR+ E. y e. X ( y ( ball ` D ) x ) e. F ) ) ) |
|
| 34 | 33 | adantr | |- ( ( D e. ( *Met ` X ) /\ A e. ( J fLim F ) ) -> ( F e. ( CauFil ` D ) <-> ( F e. ( Fil ` X ) /\ A. x e. RR+ E. y e. X ( y ( ball ` D ) x ) e. F ) ) ) |
| 35 | 8 32 34 | mpbir2and | |- ( ( D e. ( *Met ` X ) /\ A e. ( J fLim F ) ) -> F e. ( CauFil ` D ) ) |