This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain and range of the function F . (Contributed by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | flift.1 | ⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) | |
| flift.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑅 ) | ||
| flift.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑆 ) | ||
| Assertion | fliftf | ⊢ ( 𝜑 → ( Fun 𝐹 ↔ 𝐹 : ran ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ⟶ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flift.1 | ⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) | |
| 2 | flift.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑅 ) | |
| 3 | flift.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑆 ) | |
| 4 | simpr | ⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → Fun 𝐹 ) | |
| 5 | 1 2 3 | fliftel | ⊢ ( 𝜑 → ( 𝑦 𝐹 𝑧 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) ) ) |
| 6 | 5 | exbidv | ⊢ ( 𝜑 → ( ∃ 𝑧 𝑦 𝐹 𝑧 ↔ ∃ 𝑧 ∃ 𝑥 ∈ 𝑋 ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → ( ∃ 𝑧 𝑦 𝐹 𝑧 ↔ ∃ 𝑧 ∃ 𝑥 ∈ 𝑋 ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) ) ) |
| 8 | rexcom4 | ⊢ ( ∃ 𝑥 ∈ 𝑋 ∃ 𝑧 ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) ↔ ∃ 𝑧 ∃ 𝑥 ∈ 𝑋 ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) ) | |
| 9 | 19.42v | ⊢ ( ∃ 𝑧 ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) ↔ ( 𝑦 = 𝐴 ∧ ∃ 𝑧 𝑧 = 𝐵 ) ) | |
| 10 | elisset | ⊢ ( 𝐵 ∈ 𝑆 → ∃ 𝑧 𝑧 = 𝐵 ) | |
| 11 | 3 10 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑧 𝑧 = 𝐵 ) |
| 12 | 11 | biantrud | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 = 𝐴 ↔ ( 𝑦 = 𝐴 ∧ ∃ 𝑧 𝑧 = 𝐵 ) ) ) |
| 13 | 9 12 | bitr4id | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑧 ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) ↔ 𝑦 = 𝐴 ) ) |
| 14 | 13 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑋 ∃ 𝑧 ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) ↔ ∃ 𝑥 ∈ 𝑋 𝑦 = 𝐴 ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → ( ∃ 𝑥 ∈ 𝑋 ∃ 𝑧 ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) ↔ ∃ 𝑥 ∈ 𝑋 𝑦 = 𝐴 ) ) |
| 16 | 8 15 | bitr3id | ⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → ( ∃ 𝑧 ∃ 𝑥 ∈ 𝑋 ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐵 ) ↔ ∃ 𝑥 ∈ 𝑋 𝑦 = 𝐴 ) ) |
| 17 | 7 16 | bitrd | ⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → ( ∃ 𝑧 𝑦 𝐹 𝑧 ↔ ∃ 𝑥 ∈ 𝑋 𝑦 = 𝐴 ) ) |
| 18 | 17 | abbidv | ⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → { 𝑦 ∣ ∃ 𝑧 𝑦 𝐹 𝑧 } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 𝑦 = 𝐴 } ) |
| 19 | df-dm | ⊢ dom 𝐹 = { 𝑦 ∣ ∃ 𝑧 𝑦 𝐹 𝑧 } | |
| 20 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) | |
| 21 | 20 | rnmpt | ⊢ ran ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 𝑦 = 𝐴 } |
| 22 | 18 19 21 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → dom 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
| 23 | df-fn | ⊢ ( 𝐹 Fn ran ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↔ ( Fun 𝐹 ∧ dom 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) | |
| 24 | 4 22 23 | sylanbrc | ⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → 𝐹 Fn ran ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
| 25 | 1 2 3 | fliftrel | ⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑅 × 𝑆 ) ) |
| 26 | 25 | adantr | ⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → 𝐹 ⊆ ( 𝑅 × 𝑆 ) ) |
| 27 | rnss | ⊢ ( 𝐹 ⊆ ( 𝑅 × 𝑆 ) → ran 𝐹 ⊆ ran ( 𝑅 × 𝑆 ) ) | |
| 28 | 26 27 | syl | ⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → ran 𝐹 ⊆ ran ( 𝑅 × 𝑆 ) ) |
| 29 | rnxpss | ⊢ ran ( 𝑅 × 𝑆 ) ⊆ 𝑆 | |
| 30 | 28 29 | sstrdi | ⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → ran 𝐹 ⊆ 𝑆 ) |
| 31 | df-f | ⊢ ( 𝐹 : ran ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ⟶ 𝑆 ↔ ( 𝐹 Fn ran ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∧ ran 𝐹 ⊆ 𝑆 ) ) | |
| 32 | 24 30 31 | sylanbrc | ⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → 𝐹 : ran ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ⟶ 𝑆 ) |
| 33 | 32 | ex | ⊢ ( 𝜑 → ( Fun 𝐹 → 𝐹 : ran ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ⟶ 𝑆 ) ) |
| 34 | ffun | ⊢ ( 𝐹 : ran ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ⟶ 𝑆 → Fun 𝐹 ) | |
| 35 | 33 34 | impbid1 | ⊢ ( 𝜑 → ( Fun 𝐹 ↔ 𝐹 : ran ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ⟶ 𝑆 ) ) |