This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the relation F . (Contributed by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | flift.1 | ⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) | |
| flift.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑅 ) | ||
| flift.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑆 ) | ||
| Assertion | fliftel | ⊢ ( 𝜑 → ( 𝐶 𝐹 𝐷 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝐶 = 𝐴 ∧ 𝐷 = 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flift.1 | ⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) | |
| 2 | flift.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑅 ) | |
| 3 | flift.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑆 ) | |
| 4 | df-br | ⊢ ( 𝐶 𝐹 𝐷 ↔ 〈 𝐶 , 𝐷 〉 ∈ 𝐹 ) | |
| 5 | 1 | eleq2i | ⊢ ( 〈 𝐶 , 𝐷 〉 ∈ 𝐹 ↔ 〈 𝐶 , 𝐷 〉 ∈ ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ) |
| 6 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) = ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) | |
| 7 | opex | ⊢ 〈 𝐴 , 𝐵 〉 ∈ V | |
| 8 | 6 7 | elrnmpti | ⊢ ( 〈 𝐶 , 𝐷 〉 ∈ ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ↔ ∃ 𝑥 ∈ 𝑋 〈 𝐶 , 𝐷 〉 = 〈 𝐴 , 𝐵 〉 ) |
| 9 | 4 5 8 | 3bitri | ⊢ ( 𝐶 𝐹 𝐷 ↔ ∃ 𝑥 ∈ 𝑋 〈 𝐶 , 𝐷 〉 = 〈 𝐴 , 𝐵 〉 ) |
| 10 | opthg2 | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ( 〈 𝐶 , 𝐷 〉 = 〈 𝐴 , 𝐵 〉 ↔ ( 𝐶 = 𝐴 ∧ 𝐷 = 𝐵 ) ) ) | |
| 11 | 2 3 10 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 〈 𝐶 , 𝐷 〉 = 〈 𝐴 , 𝐵 〉 ↔ ( 𝐶 = 𝐴 ∧ 𝐷 = 𝐵 ) ) ) |
| 12 | 11 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑋 〈 𝐶 , 𝐷 〉 = 〈 𝐴 , 𝐵 〉 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝐶 = 𝐴 ∧ 𝐷 = 𝐵 ) ) ) |
| 13 | 9 12 | bitrid | ⊢ ( 𝜑 → ( 𝐶 𝐹 𝐷 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝐶 = 𝐴 ∧ 𝐷 = 𝐵 ) ) ) |