This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The floor function value is less than the next integer. (Contributed by NM, 24-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fllt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 < 𝐵 ↔ ( ⌊ ‘ 𝐴 ) < 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flge | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ≤ 𝐴 ↔ 𝐵 ≤ ( ⌊ ‘ 𝐴 ) ) ) | |
| 2 | zre | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ ) | |
| 3 | lenlt | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) | |
| 4 | 2 3 | sylan | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) |
| 5 | 4 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) |
| 6 | reflcl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) | |
| 7 | lenlt | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ℝ ) → ( 𝐵 ≤ ( ⌊ ‘ 𝐴 ) ↔ ¬ ( ⌊ ‘ 𝐴 ) < 𝐵 ) ) | |
| 8 | 2 6 7 | syl2anr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ≤ ( ⌊ ‘ 𝐴 ) ↔ ¬ ( ⌊ ‘ 𝐴 ) < 𝐵 ) ) |
| 9 | 1 5 8 | 3bitr3d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ¬ 𝐴 < 𝐵 ↔ ¬ ( ⌊ ‘ 𝐴 ) < 𝐵 ) ) |
| 10 | 9 | con4bid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 < 𝐵 ↔ ( ⌊ ‘ 𝐴 ) < 𝐵 ) ) |