This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same group components (properties), one is a field iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| drngpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| drngpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| drngpropd.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | ||
| Assertion | fldpropd | ⊢ ( 𝜑 → ( 𝐾 ∈ Field ↔ 𝐿 ∈ Field ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | drngpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | drngpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 4 | drngpropd.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | |
| 5 | 1 2 3 4 | drngpropd | ⊢ ( 𝜑 → ( 𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing ) ) |
| 6 | 1 2 3 4 | crngpropd | ⊢ ( 𝜑 → ( 𝐾 ∈ CRing ↔ 𝐿 ∈ CRing ) ) |
| 7 | 5 6 | anbi12d | ⊢ ( 𝜑 → ( ( 𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing ) ↔ ( 𝐿 ∈ DivRing ∧ 𝐿 ∈ CRing ) ) ) |
| 8 | isfld | ⊢ ( 𝐾 ∈ Field ↔ ( 𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing ) ) | |
| 9 | isfld | ⊢ ( 𝐿 ∈ Field ↔ ( 𝐿 ∈ DivRing ∧ 𝐿 ∈ CRing ) ) | |
| 10 | 7 8 9 | 3bitr4g | ⊢ ( 𝜑 → ( 𝐾 ∈ Field ↔ 𝐿 ∈ Field ) ) |