This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same group components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 27-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| drngpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| drngpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| drngpropd.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | ||
| Assertion | drngpropd | ⊢ ( 𝜑 → ( 𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | drngpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | drngpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 4 | drngpropd.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | |
| 5 | 1 2 4 | unitpropd | ⊢ ( 𝜑 → ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐿 ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ Ring ) → ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐿 ) ) |
| 7 | 1 2 | eqtr3d | ⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ Ring ) → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
| 9 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ Ring ) → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 10 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ Ring ) → 𝐵 = ( Base ‘ 𝐿 ) ) |
| 11 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
| 12 | 9 10 11 | grpidpropd | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ Ring ) → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
| 13 | 12 | sneqd | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ Ring ) → { ( 0g ‘ 𝐾 ) } = { ( 0g ‘ 𝐿 ) } ) |
| 14 | 8 13 | difeq12d | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ Ring ) → ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) = ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) |
| 15 | 6 14 | eqeq12d | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ Ring ) → ( ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ↔ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
| 16 | 15 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ↔ ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) ) |
| 17 | 1 2 3 4 | ringpropd | ⊢ ( 𝜑 → ( 𝐾 ∈ Ring ↔ 𝐿 ∈ Ring ) ) |
| 18 | 17 | anbi1d | ⊢ ( 𝜑 → ( ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ↔ ( 𝐿 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) ) |
| 19 | 16 18 | bitrd | ⊢ ( 𝜑 → ( ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ↔ ( 𝐿 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) ) |
| 20 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 21 | eqid | ⊢ ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐾 ) | |
| 22 | eqid | ⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) | |
| 23 | 20 21 22 | isdrng | ⊢ ( 𝐾 ∈ DivRing ↔ ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ) |
| 24 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 25 | eqid | ⊢ ( Unit ‘ 𝐿 ) = ( Unit ‘ 𝐿 ) | |
| 26 | eqid | ⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) | |
| 27 | 24 25 26 | isdrng | ⊢ ( 𝐿 ∈ DivRing ↔ ( 𝐿 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
| 28 | 19 23 27 | 3bitr4g | ⊢ ( 𝜑 → ( 𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing ) ) |