This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same group components (properties), one is a field iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngpropd.1 | ||
| drngpropd.2 | |||
| drngpropd.3 | |||
| drngpropd.4 | |||
| Assertion | fldpropd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngpropd.1 | ||
| 2 | drngpropd.2 | ||
| 3 | drngpropd.3 | ||
| 4 | drngpropd.4 | ||
| 5 | 1 2 3 4 | drngpropd | |
| 6 | 1 2 3 4 | crngpropd | |
| 7 | 5 6 | anbi12d | |
| 8 | isfld | ||
| 9 | isfld | ||
| 10 | 7 8 9 | 3bitr4g |