This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same group components (properties), one is a field iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| drngpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
||
| drngpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
||
| drngpropd.4 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
||
| Assertion | fldpropd | |- ( ph -> ( K e. Field <-> L e. Field ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | drngpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | drngpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
|
| 4 | drngpropd.4 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
|
| 5 | 1 2 3 4 | drngpropd | |- ( ph -> ( K e. DivRing <-> L e. DivRing ) ) |
| 6 | 1 2 3 4 | crngpropd | |- ( ph -> ( K e. CRing <-> L e. CRing ) ) |
| 7 | 5 6 | anbi12d | |- ( ph -> ( ( K e. DivRing /\ K e. CRing ) <-> ( L e. DivRing /\ L e. CRing ) ) ) |
| 8 | isfld | |- ( K e. Field <-> ( K e. DivRing /\ K e. CRing ) ) |
|
| 9 | isfld | |- ( L e. Field <-> ( L e. DivRing /\ L e. CRing ) ) |
|
| 10 | 7 8 9 | 3bitr4g | |- ( ph -> ( K e. Field <-> L e. Field ) ) |