This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite set is dominated by the set of natural numbers. (Contributed by SN, 6-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fisdomnn | ⊢ ( 𝐴 ∈ Fin → 𝐴 ≺ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | canth2g | ⊢ ( 𝐴 ∈ Fin → 𝐴 ≺ 𝒫 𝐴 ) | |
| 2 | pwfi | ⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin ) | |
| 3 | fzfi | ⊢ ( 1 ... ( ♯ ‘ 𝒫 𝐴 ) ) ∈ Fin | |
| 4 | nnex | ⊢ ℕ ∈ V | |
| 5 | fz1ssnn | ⊢ ( 1 ... ( ♯ ‘ 𝒫 𝐴 ) ) ⊆ ℕ | |
| 6 | ssdomfi2 | ⊢ ( ( ( 1 ... ( ♯ ‘ 𝒫 𝐴 ) ) ∈ Fin ∧ ℕ ∈ V ∧ ( 1 ... ( ♯ ‘ 𝒫 𝐴 ) ) ⊆ ℕ ) → ( 1 ... ( ♯ ‘ 𝒫 𝐴 ) ) ≼ ℕ ) | |
| 7 | 3 4 5 6 | mp3an | ⊢ ( 1 ... ( ♯ ‘ 𝒫 𝐴 ) ) ≼ ℕ |
| 8 | isfinite4 | ⊢ ( 𝒫 𝐴 ∈ Fin ↔ ( 1 ... ( ♯ ‘ 𝒫 𝐴 ) ) ≈ 𝒫 𝐴 ) | |
| 9 | domen1 | ⊢ ( ( 1 ... ( ♯ ‘ 𝒫 𝐴 ) ) ≈ 𝒫 𝐴 → ( ( 1 ... ( ♯ ‘ 𝒫 𝐴 ) ) ≼ ℕ ↔ 𝒫 𝐴 ≼ ℕ ) ) | |
| 10 | 8 9 | sylbi | ⊢ ( 𝒫 𝐴 ∈ Fin → ( ( 1 ... ( ♯ ‘ 𝒫 𝐴 ) ) ≼ ℕ ↔ 𝒫 𝐴 ≼ ℕ ) ) |
| 11 | 7 10 | mpbii | ⊢ ( 𝒫 𝐴 ∈ Fin → 𝒫 𝐴 ≼ ℕ ) |
| 12 | 2 11 | sylbi | ⊢ ( 𝐴 ∈ Fin → 𝒫 𝐴 ≼ ℕ ) |
| 13 | sdomdomtrfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴 ≼ ℕ ) → 𝐴 ≺ ℕ ) | |
| 14 | 1 12 13 | mpd3an23 | ⊢ ( 𝐴 ∈ Fin → 𝐴 ≺ ℕ ) |