This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite set is dominated by the set of natural numbers. (Contributed by SN, 6-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fisdomnn | |- ( A e. Fin -> A ~< NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | canth2g | |- ( A e. Fin -> A ~< ~P A ) |
|
| 2 | pwfi | |- ( A e. Fin <-> ~P A e. Fin ) |
|
| 3 | fzfi | |- ( 1 ... ( # ` ~P A ) ) e. Fin |
|
| 4 | nnex | |- NN e. _V |
|
| 5 | fz1ssnn | |- ( 1 ... ( # ` ~P A ) ) C_ NN |
|
| 6 | ssdomfi2 | |- ( ( ( 1 ... ( # ` ~P A ) ) e. Fin /\ NN e. _V /\ ( 1 ... ( # ` ~P A ) ) C_ NN ) -> ( 1 ... ( # ` ~P A ) ) ~<_ NN ) |
|
| 7 | 3 4 5 6 | mp3an | |- ( 1 ... ( # ` ~P A ) ) ~<_ NN |
| 8 | isfinite4 | |- ( ~P A e. Fin <-> ( 1 ... ( # ` ~P A ) ) ~~ ~P A ) |
|
| 9 | domen1 | |- ( ( 1 ... ( # ` ~P A ) ) ~~ ~P A -> ( ( 1 ... ( # ` ~P A ) ) ~<_ NN <-> ~P A ~<_ NN ) ) |
|
| 10 | 8 9 | sylbi | |- ( ~P A e. Fin -> ( ( 1 ... ( # ` ~P A ) ) ~<_ NN <-> ~P A ~<_ NN ) ) |
| 11 | 7 10 | mpbii | |- ( ~P A e. Fin -> ~P A ~<_ NN ) |
| 12 | 2 11 | sylbi | |- ( A e. Fin -> ~P A ~<_ NN ) |
| 13 | sdomdomtrfi | |- ( ( A e. Fin /\ A ~< ~P A /\ ~P A ~<_ NN ) -> A ~< NN ) |
|
| 14 | 1 12 13 | mpd3an23 | |- ( A e. Fin -> A ~< NN ) |