This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite cover of a topological space is a locally finite cover. (Contributed by Jeff Hankins, 21-Jan-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | finlocfin.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| finlocfin.2 | ⊢ 𝑌 = ∪ 𝐴 | ||
| Assertion | finlocfin | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌 ) → 𝐴 ∈ ( LocFin ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finlocfin.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | finlocfin.2 | ⊢ 𝑌 = ∪ 𝐴 | |
| 3 | simp1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌 ) → 𝐽 ∈ Top ) | |
| 4 | simp3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌 ) → 𝑋 = 𝑌 ) | |
| 5 | simpl1 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐽 ∈ Top ) | |
| 6 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 7 | 5 6 | syl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑋 ∈ 𝐽 ) |
| 8 | simpr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 9 | simpl2 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ Fin ) | |
| 10 | ssrab2 | ⊢ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑋 ) ≠ ∅ } ⊆ 𝐴 | |
| 11 | ssfi | ⊢ ( ( 𝐴 ∈ Fin ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑋 ) ≠ ∅ } ⊆ 𝐴 ) → { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑋 ) ≠ ∅ } ∈ Fin ) | |
| 12 | 9 10 11 | sylancl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑋 ) ≠ ∅ } ∈ Fin ) |
| 13 | eleq2 | ⊢ ( 𝑛 = 𝑋 → ( 𝑥 ∈ 𝑛 ↔ 𝑥 ∈ 𝑋 ) ) | |
| 14 | ineq2 | ⊢ ( 𝑛 = 𝑋 → ( 𝑠 ∩ 𝑛 ) = ( 𝑠 ∩ 𝑋 ) ) | |
| 15 | 14 | neeq1d | ⊢ ( 𝑛 = 𝑋 → ( ( 𝑠 ∩ 𝑛 ) ≠ ∅ ↔ ( 𝑠 ∩ 𝑋 ) ≠ ∅ ) ) |
| 16 | 15 | rabbidv | ⊢ ( 𝑛 = 𝑋 → { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } = { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑋 ) ≠ ∅ } ) |
| 17 | 16 | eleq1d | ⊢ ( 𝑛 = 𝑋 → ( { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ↔ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑋 ) ≠ ∅ } ∈ Fin ) ) |
| 18 | 13 17 | anbi12d | ⊢ ( 𝑛 = 𝑋 → ( ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ↔ ( 𝑥 ∈ 𝑋 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑋 ) ≠ ∅ } ∈ Fin ) ) ) |
| 19 | 18 | rspcev | ⊢ ( ( 𝑋 ∈ 𝐽 ∧ ( 𝑥 ∈ 𝑋 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑋 ) ≠ ∅ } ∈ Fin ) ) → ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) |
| 20 | 7 8 12 19 | syl12anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) |
| 21 | 20 | ralrimiva | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌 ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) |
| 22 | 1 2 | islocfin | ⊢ ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) |
| 23 | 3 4 21 22 | syl3anbrc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌 ) → 𝐴 ∈ ( LocFin ‘ 𝐽 ) ) |