This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite set has a minimum under a total order. (Contributed by AV, 6-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fimin2g | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) ) | |
| 2 | sopo | ⊢ ( 𝑅 Or 𝐴 → 𝑅 Po 𝐴 ) | |
| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → 𝑅 Po 𝐴 ) |
| 4 | simp2 | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ Fin ) | |
| 5 | frfi | ⊢ ( ( 𝑅 Po 𝐴 ∧ 𝐴 ∈ Fin ) → 𝑅 Fr 𝐴 ) | |
| 6 | 3 4 5 | syl2anc | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → 𝑅 Fr 𝐴 ) |
| 7 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 8 | fri | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝑅 Fr 𝐴 ) ∧ ( 𝐴 ⊆ 𝐴 ∧ 𝐴 ≠ ∅ ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) | |
| 9 | 7 8 | mpanr1 | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝑅 Fr 𝐴 ) ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) |
| 10 | 9 | an32s | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) ∧ 𝑅 Fr 𝐴 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) |
| 11 | 1 6 10 | syl2anc | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) |