This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite set has a minimum under a total order. (Contributed by AV, 6-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fiming | |- ( ( R Or A /\ A e. Fin /\ A =/= (/) ) -> E. x e. A A. y e. A ( x =/= y -> x R y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fimin2g | |- ( ( R Or A /\ A e. Fin /\ A =/= (/) ) -> E. x e. A A. y e. A -. y R x ) |
|
| 2 | nesym | |- ( x =/= y <-> -. y = x ) |
|
| 3 | 2 | imbi1i | |- ( ( x =/= y -> x R y ) <-> ( -. y = x -> x R y ) ) |
| 4 | pm4.64 | |- ( ( -. y = x -> x R y ) <-> ( y = x \/ x R y ) ) |
|
| 5 | 3 4 | bitri | |- ( ( x =/= y -> x R y ) <-> ( y = x \/ x R y ) ) |
| 6 | sotric | |- ( ( R Or A /\ ( y e. A /\ x e. A ) ) -> ( y R x <-> -. ( y = x \/ x R y ) ) ) |
|
| 7 | 6 | ancom2s | |- ( ( R Or A /\ ( x e. A /\ y e. A ) ) -> ( y R x <-> -. ( y = x \/ x R y ) ) ) |
| 8 | 7 | con2bid | |- ( ( R Or A /\ ( x e. A /\ y e. A ) ) -> ( ( y = x \/ x R y ) <-> -. y R x ) ) |
| 9 | 5 8 | bitrid | |- ( ( R Or A /\ ( x e. A /\ y e. A ) ) -> ( ( x =/= y -> x R y ) <-> -. y R x ) ) |
| 10 | 9 | anassrs | |- ( ( ( R Or A /\ x e. A ) /\ y e. A ) -> ( ( x =/= y -> x R y ) <-> -. y R x ) ) |
| 11 | 10 | ralbidva | |- ( ( R Or A /\ x e. A ) -> ( A. y e. A ( x =/= y -> x R y ) <-> A. y e. A -. y R x ) ) |
| 12 | 11 | rexbidva | |- ( R Or A -> ( E. x e. A A. y e. A ( x =/= y -> x R y ) <-> E. x e. A A. y e. A -. y R x ) ) |
| 13 | 12 | 3ad2ant1 | |- ( ( R Or A /\ A e. Fin /\ A =/= (/) ) -> ( E. x e. A A. y e. A ( x =/= y -> x R y ) <-> E. x e. A A. y e. A -. y R x ) ) |
| 14 | 1 13 | mpbird | |- ( ( R Or A /\ A e. Fin /\ A =/= (/) ) -> E. x e. A A. y e. A ( x =/= y -> x R y ) ) |