This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element belongs to a filter iff any element below it does. (Contributed by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfilss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ 𝐹 ↔ ∃ 𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar | ⊢ ( 𝐴 ⊆ 𝑋 → ( ∃ 𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴 ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴 ) ) ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ∃ 𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴 ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴 ) ) ) |
| 3 | filfbas | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) | |
| 4 | elfg | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴 ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴 ) ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴 ) ) ) |
| 7 | fgfil | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) = 𝐹 ) | |
| 8 | 7 | eleq2d | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝑋 filGen 𝐹 ) ↔ 𝐴 ∈ 𝐹 ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ ( 𝑋 filGen 𝐹 ) ↔ 𝐴 ∈ 𝐹 ) ) |
| 10 | 2 6 9 | 3bitr2rd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ 𝐹 ↔ ∃ 𝑡 ∈ 𝐹 𝑡 ⊆ 𝐴 ) ) |