This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a composition is injective, then the restrictions of its components to the minimum domains are injective. (Contributed by GL and AV, 18-Sep-2024) (Revised by AV, 7-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fcores.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| fcores.e | ⊢ 𝐸 = ( ran 𝐹 ∩ 𝐶 ) | ||
| fcores.p | ⊢ 𝑃 = ( ◡ 𝐹 “ 𝐶 ) | ||
| fcores.x | ⊢ 𝑋 = ( 𝐹 ↾ 𝑃 ) | ||
| fcores.g | ⊢ ( 𝜑 → 𝐺 : 𝐶 ⟶ 𝐷 ) | ||
| fcores.y | ⊢ 𝑌 = ( 𝐺 ↾ 𝐸 ) | ||
| fcoresf1.i | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ) | ||
| Assertion | fcoresf1 | ⊢ ( 𝜑 → ( 𝑋 : 𝑃 –1-1→ 𝐸 ∧ 𝑌 : 𝐸 –1-1→ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcores.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | fcores.e | ⊢ 𝐸 = ( ran 𝐹 ∩ 𝐶 ) | |
| 3 | fcores.p | ⊢ 𝑃 = ( ◡ 𝐹 “ 𝐶 ) | |
| 4 | fcores.x | ⊢ 𝑋 = ( 𝐹 ↾ 𝑃 ) | |
| 5 | fcores.g | ⊢ ( 𝜑 → 𝐺 : 𝐶 ⟶ 𝐷 ) | |
| 6 | fcores.y | ⊢ 𝑌 = ( 𝐺 ↾ 𝐸 ) | |
| 7 | fcoresf1.i | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ) | |
| 8 | 1 2 3 4 | fcoreslem3 | ⊢ ( 𝜑 → 𝑋 : 𝑃 –onto→ 𝐸 ) |
| 9 | fof | ⊢ ( 𝑋 : 𝑃 –onto→ 𝐸 → 𝑋 : 𝑃 ⟶ 𝐸 ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → 𝑋 : 𝑃 ⟶ 𝐸 ) |
| 11 | dff13 | ⊢ ( ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ↔ ( ( 𝐺 ∘ 𝐹 ) : 𝑃 ⟶ 𝐷 ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 12 | 1 2 3 4 5 6 | fcoresf1lem | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑥 ) ) ) |
| 13 | 12 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑥 ) ) ) |
| 14 | 1 2 3 4 5 6 | fcoresf1lem | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑃 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑦 ) ) ) |
| 15 | 14 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑦 ) ) ) |
| 16 | 13 15 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) ↔ ( 𝑌 ‘ ( 𝑋 ‘ 𝑥 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑦 ) ) ) ) |
| 17 | 16 | imbi1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑥 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) ) ) |
| 18 | fveq2 | ⊢ ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → ( 𝑌 ‘ ( 𝑋 ‘ 𝑥 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑦 ) ) ) | |
| 19 | 18 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → ( 𝑌 ‘ ( 𝑋 ‘ 𝑥 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑦 ) ) ) ) |
| 20 | 19 | imim1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑥 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) → ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 21 | 17 20 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 22 | 21 | ralimdvva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 23 | 22 | adantld | ⊢ ( 𝜑 → ( ( ( 𝐺 ∘ 𝐹 ) : 𝑃 ⟶ 𝐷 ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 24 | 11 23 | biimtrid | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 25 | 7 24 | mpd | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 26 | dff13 | ⊢ ( 𝑋 : 𝑃 –1-1→ 𝐸 ↔ ( 𝑋 : 𝑃 ⟶ 𝐸 ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 27 | 10 25 26 | sylanbrc | ⊢ ( 𝜑 → 𝑋 : 𝑃 –1-1→ 𝐸 ) |
| 28 | 2 | a1i | ⊢ ( 𝜑 → 𝐸 = ( ran 𝐹 ∩ 𝐶 ) ) |
| 29 | inss2 | ⊢ ( ran 𝐹 ∩ 𝐶 ) ⊆ 𝐶 | |
| 30 | 28 29 | eqsstrdi | ⊢ ( 𝜑 → 𝐸 ⊆ 𝐶 ) |
| 31 | 5 30 | fssresd | ⊢ ( 𝜑 → ( 𝐺 ↾ 𝐸 ) : 𝐸 ⟶ 𝐷 ) |
| 32 | 6 | feq1i | ⊢ ( 𝑌 : 𝐸 ⟶ 𝐷 ↔ ( 𝐺 ↾ 𝐸 ) : 𝐸 ⟶ 𝐷 ) |
| 33 | 31 32 | sylibr | ⊢ ( 𝜑 → 𝑌 : 𝐸 ⟶ 𝐷 ) |
| 34 | 1 2 3 4 | fcoreslem2 | ⊢ ( 𝜑 → ran 𝑋 = 𝐸 ) |
| 35 | 34 | eqcomd | ⊢ ( 𝜑 → 𝐸 = ran 𝑋 ) |
| 36 | 35 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐸 ↔ 𝑥 ∈ ran 𝑋 ) ) |
| 37 | fofn | ⊢ ( 𝑋 : 𝑃 –onto→ 𝐸 → 𝑋 Fn 𝑃 ) | |
| 38 | 8 37 | syl | ⊢ ( 𝜑 → 𝑋 Fn 𝑃 ) |
| 39 | fvelrnb | ⊢ ( 𝑋 Fn 𝑃 → ( 𝑥 ∈ ran 𝑋 ↔ ∃ 𝑎 ∈ 𝑃 ( 𝑋 ‘ 𝑎 ) = 𝑥 ) ) | |
| 40 | 38 39 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ran 𝑋 ↔ ∃ 𝑎 ∈ 𝑃 ( 𝑋 ‘ 𝑎 ) = 𝑥 ) ) |
| 41 | 36 40 | bitrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐸 ↔ ∃ 𝑎 ∈ 𝑃 ( 𝑋 ‘ 𝑎 ) = 𝑥 ) ) |
| 42 | 35 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐸 ↔ 𝑦 ∈ ran 𝑋 ) ) |
| 43 | fvelrnb | ⊢ ( 𝑋 Fn 𝑃 → ( 𝑦 ∈ ran 𝑋 ↔ ∃ 𝑏 ∈ 𝑃 ( 𝑋 ‘ 𝑏 ) = 𝑦 ) ) | |
| 44 | 38 43 | syl | ⊢ ( 𝜑 → ( 𝑦 ∈ ran 𝑋 ↔ ∃ 𝑏 ∈ 𝑃 ( 𝑋 ‘ 𝑏 ) = 𝑦 ) ) |
| 45 | 42 44 | bitrd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐸 ↔ ∃ 𝑏 ∈ 𝑃 ( 𝑋 ‘ 𝑏 ) = 𝑦 ) ) |
| 46 | 41 45 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸 ) ↔ ( ∃ 𝑎 ∈ 𝑃 ( 𝑋 ‘ 𝑎 ) = 𝑥 ∧ ∃ 𝑏 ∈ 𝑃 ( 𝑋 ‘ 𝑏 ) = 𝑦 ) ) ) |
| 47 | fveqeq2 | ⊢ ( 𝑥 = 𝑎 → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) ↔ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) ) ) | |
| 48 | eqeq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 = 𝑦 ↔ 𝑎 = 𝑦 ) ) | |
| 49 | 47 48 | imbi12d | ⊢ ( 𝑥 = 𝑎 → ( ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑎 = 𝑦 ) ) ) |
| 50 | fveq2 | ⊢ ( 𝑦 = 𝑏 → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) ) | |
| 51 | 50 | eqeq2d | ⊢ ( 𝑦 = 𝑏 → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) ↔ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) ) ) |
| 52 | equequ2 | ⊢ ( 𝑦 = 𝑏 → ( 𝑎 = 𝑦 ↔ 𝑎 = 𝑏 ) ) | |
| 53 | 51 52 | imbi12d | ⊢ ( 𝑦 = 𝑏 → ( ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑎 = 𝑦 ) ↔ ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
| 54 | 49 53 | rspc2v | ⊢ ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
| 55 | 54 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
| 56 | 1 2 3 4 5 6 | fcoresf1lem | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) ) |
| 57 | 56 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) ) |
| 58 | 1 2 3 4 5 6 | fcoresf1lem | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑃 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) ) |
| 59 | 58 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) ) |
| 60 | 57 59 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) ↔ ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) ) ) |
| 61 | 60 | imbi1d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ↔ ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → 𝑎 = 𝑏 ) ) ) |
| 62 | fveq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) | |
| 63 | 62 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( 𝑎 = 𝑏 → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) |
| 64 | 63 | imim2d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → 𝑎 = 𝑏 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) ) |
| 65 | 61 64 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) ) |
| 66 | 55 65 | syld | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) ) |
| 67 | 66 | ex | ⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) ) ) |
| 68 | 67 | com23 | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) ) ) |
| 69 | 68 | adantld | ⊢ ( 𝜑 → ( ( ( 𝐺 ∘ 𝐹 ) : 𝑃 ⟶ 𝐷 ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) ) ) |
| 70 | 11 69 | biimtrid | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 → ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) ) ) |
| 71 | 7 70 | mpd | ⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) ) |
| 72 | 71 | impl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) ∧ 𝑏 ∈ 𝑃 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) |
| 73 | fveq2 | ⊢ ( ( 𝑋 ‘ 𝑎 ) = 𝑥 → ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ 𝑥 ) ) | |
| 74 | fveq2 | ⊢ ( ( 𝑋 ‘ 𝑏 ) = 𝑦 → ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) = ( 𝑌 ‘ 𝑦 ) ) | |
| 75 | 73 74 | eqeqan12rd | ⊢ ( ( ( 𝑋 ‘ 𝑏 ) = 𝑦 ∧ ( 𝑋 ‘ 𝑎 ) = 𝑥 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) ↔ ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) ) ) |
| 76 | eqeq12 | ⊢ ( ( ( 𝑋 ‘ 𝑎 ) = 𝑥 ∧ ( 𝑋 ‘ 𝑏 ) = 𝑦 ) → ( ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ↔ 𝑥 = 𝑦 ) ) | |
| 77 | 76 | ancoms | ⊢ ( ( ( 𝑋 ‘ 𝑏 ) = 𝑦 ∧ ( 𝑋 ‘ 𝑎 ) = 𝑥 ) → ( ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ↔ 𝑥 = 𝑦 ) ) |
| 78 | 75 77 | imbi12d | ⊢ ( ( ( 𝑋 ‘ 𝑏 ) = 𝑦 ∧ ( 𝑋 ‘ 𝑎 ) = 𝑥 ) → ( ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ↔ ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 79 | 72 78 | syl5ibcom | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) ∧ 𝑏 ∈ 𝑃 ) → ( ( ( 𝑋 ‘ 𝑏 ) = 𝑦 ∧ ( 𝑋 ‘ 𝑎 ) = 𝑥 ) → ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 80 | 79 | expd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) ∧ 𝑏 ∈ 𝑃 ) → ( ( 𝑋 ‘ 𝑏 ) = 𝑦 → ( ( 𝑋 ‘ 𝑎 ) = 𝑥 → ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
| 81 | 80 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → ( ∃ 𝑏 ∈ 𝑃 ( 𝑋 ‘ 𝑏 ) = 𝑦 → ( ( 𝑋 ‘ 𝑎 ) = 𝑥 → ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
| 82 | 81 | com23 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → ( ( 𝑋 ‘ 𝑎 ) = 𝑥 → ( ∃ 𝑏 ∈ 𝑃 ( 𝑋 ‘ 𝑏 ) = 𝑦 → ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
| 83 | 82 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝑃 ( 𝑋 ‘ 𝑎 ) = 𝑥 → ( ∃ 𝑏 ∈ 𝑃 ( 𝑋 ‘ 𝑏 ) = 𝑦 → ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
| 84 | 83 | impd | ⊢ ( 𝜑 → ( ( ∃ 𝑎 ∈ 𝑃 ( 𝑋 ‘ 𝑎 ) = 𝑥 ∧ ∃ 𝑏 ∈ 𝑃 ( 𝑋 ‘ 𝑏 ) = 𝑦 ) → ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 85 | 46 84 | sylbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸 ) → ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 86 | 85 | ralrimivv | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐸 ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 87 | dff13 | ⊢ ( 𝑌 : 𝐸 –1-1→ 𝐷 ↔ ( 𝑌 : 𝐸 ⟶ 𝐷 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐸 ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 88 | 33 86 87 | sylanbrc | ⊢ ( 𝜑 → 𝑌 : 𝐸 –1-1→ 𝐷 ) |
| 89 | 27 88 | jca | ⊢ ( 𝜑 → ( 𝑋 : 𝑃 –1-1→ 𝐸 ∧ 𝑌 : 𝐸 –1-1→ 𝐷 ) ) |