This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A composition is injective iff the restrictions of its components to the minimum domains are injective. (Contributed by GL and AV, 7-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fcores.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| fcores.e | ⊢ 𝐸 = ( ran 𝐹 ∩ 𝐶 ) | ||
| fcores.p | ⊢ 𝑃 = ( ◡ 𝐹 “ 𝐶 ) | ||
| fcores.x | ⊢ 𝑋 = ( 𝐹 ↾ 𝑃 ) | ||
| fcores.g | ⊢ ( 𝜑 → 𝐺 : 𝐶 ⟶ 𝐷 ) | ||
| fcores.y | ⊢ 𝑌 = ( 𝐺 ↾ 𝐸 ) | ||
| Assertion | fcoresf1b | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ↔ ( 𝑋 : 𝑃 –1-1→ 𝐸 ∧ 𝑌 : 𝐸 –1-1→ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcores.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | fcores.e | ⊢ 𝐸 = ( ran 𝐹 ∩ 𝐶 ) | |
| 3 | fcores.p | ⊢ 𝑃 = ( ◡ 𝐹 “ 𝐶 ) | |
| 4 | fcores.x | ⊢ 𝑋 = ( 𝐹 ↾ 𝑃 ) | |
| 5 | fcores.g | ⊢ ( 𝜑 → 𝐺 : 𝐶 ⟶ 𝐷 ) | |
| 6 | fcores.y | ⊢ 𝑌 = ( 𝐺 ↾ 𝐸 ) | |
| 7 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 8 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ) → 𝐺 : 𝐶 ⟶ 𝐷 ) |
| 9 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ) → ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ) | |
| 10 | 7 2 3 4 8 6 9 | fcoresf1 | ⊢ ( ( 𝜑 ∧ ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ) → ( 𝑋 : 𝑃 –1-1→ 𝐸 ∧ 𝑌 : 𝐸 –1-1→ 𝐷 ) ) |
| 11 | 10 | ex | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 → ( 𝑋 : 𝑃 –1-1→ 𝐸 ∧ 𝑌 : 𝐸 –1-1→ 𝐷 ) ) ) |
| 12 | f1co | ⊢ ( ( 𝑌 : 𝐸 –1-1→ 𝐷 ∧ 𝑋 : 𝑃 –1-1→ 𝐸 ) → ( 𝑌 ∘ 𝑋 ) : 𝑃 –1-1→ 𝐷 ) | |
| 13 | 12 | ancoms | ⊢ ( ( 𝑋 : 𝑃 –1-1→ 𝐸 ∧ 𝑌 : 𝐸 –1-1→ 𝐷 ) → ( 𝑌 ∘ 𝑋 ) : 𝑃 –1-1→ 𝐷 ) |
| 14 | 1 2 3 4 5 6 | fcores | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( 𝑌 ∘ 𝑋 ) ) |
| 15 | f1eq1 | ⊢ ( ( 𝐺 ∘ 𝐹 ) = ( 𝑌 ∘ 𝑋 ) → ( ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ↔ ( 𝑌 ∘ 𝑋 ) : 𝑃 –1-1→ 𝐷 ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ↔ ( 𝑌 ∘ 𝑋 ) : 𝑃 –1-1→ 𝐷 ) ) |
| 17 | 13 16 | imbitrrid | ⊢ ( 𝜑 → ( ( 𝑋 : 𝑃 –1-1→ 𝐸 ∧ 𝑌 : 𝐸 –1-1→ 𝐷 ) → ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ) ) |
| 18 | 11 17 | impbid | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ↔ ( 𝑋 : 𝑃 –1-1→ 𝐸 ∧ 𝑌 : 𝐸 –1-1→ 𝐷 ) ) ) |