This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for fcores . (Contributed by AV, 17-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fcores.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| fcores.e | ⊢ 𝐸 = ( ran 𝐹 ∩ 𝐶 ) | ||
| fcores.p | ⊢ 𝑃 = ( ◡ 𝐹 “ 𝐶 ) | ||
| fcores.x | ⊢ 𝑋 = ( 𝐹 ↾ 𝑃 ) | ||
| Assertion | fcoreslem2 | ⊢ ( 𝜑 → ran 𝑋 = 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcores.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | fcores.e | ⊢ 𝐸 = ( ran 𝐹 ∩ 𝐶 ) | |
| 3 | fcores.p | ⊢ 𝑃 = ( ◡ 𝐹 “ 𝐶 ) | |
| 4 | fcores.x | ⊢ 𝑋 = ( 𝐹 ↾ 𝑃 ) | |
| 5 | df-ima | ⊢ ( 𝐹 “ 𝑃 ) = ran ( 𝐹 ↾ 𝑃 ) | |
| 6 | 4 | rneqi | ⊢ ran 𝑋 = ran ( 𝐹 ↾ 𝑃 ) |
| 7 | 6 | eqcomi | ⊢ ran ( 𝐹 ↾ 𝑃 ) = ran 𝑋 |
| 8 | 7 | a1i | ⊢ ( 𝜑 → ran ( 𝐹 ↾ 𝑃 ) = ran 𝑋 ) |
| 9 | 5 8 | eqtr2id | ⊢ ( 𝜑 → ran 𝑋 = ( 𝐹 “ 𝑃 ) ) |
| 10 | 1 2 3 | fcoreslem1 | ⊢ ( 𝜑 → 𝑃 = ( ◡ 𝐹 “ 𝐸 ) ) |
| 11 | 10 | imaeq2d | ⊢ ( 𝜑 → ( 𝐹 “ 𝑃 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝐸 ) ) ) |
| 12 | 1 | ffund | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 13 | funimacnv | ⊢ ( Fun 𝐹 → ( 𝐹 “ ( ◡ 𝐹 “ 𝐸 ) ) = ( 𝐸 ∩ ran 𝐹 ) ) | |
| 14 | 12 13 | syl | ⊢ ( 𝜑 → ( 𝐹 “ ( ◡ 𝐹 “ 𝐸 ) ) = ( 𝐸 ∩ ran 𝐹 ) ) |
| 15 | inss1 | ⊢ ( ran 𝐹 ∩ 𝐶 ) ⊆ ran 𝐹 | |
| 16 | 2 15 | eqsstri | ⊢ 𝐸 ⊆ ran 𝐹 |
| 17 | 16 | a1i | ⊢ ( 𝜑 → 𝐸 ⊆ ran 𝐹 ) |
| 18 | dfss2 | ⊢ ( 𝐸 ⊆ ran 𝐹 ↔ ( 𝐸 ∩ ran 𝐹 ) = 𝐸 ) | |
| 19 | 17 18 | sylib | ⊢ ( 𝜑 → ( 𝐸 ∩ ran 𝐹 ) = 𝐸 ) |
| 20 | 14 19 | eqtrd | ⊢ ( 𝜑 → ( 𝐹 “ ( ◡ 𝐹 “ 𝐸 ) ) = 𝐸 ) |
| 21 | 9 11 20 | 3eqtrd | ⊢ ( 𝜑 → ran 𝑋 = 𝐸 ) |