This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that a function is the inverse of a bijective function if their composition is the identity function. Formerly part of proof of fcof1o . (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by AV, 15-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fcof1oinvd.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | |
| fcof1oinvd.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) | ||
| fcof1oinvd.b | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ) | ||
| Assertion | fcof1oinvd | ⊢ ( 𝜑 → ◡ 𝐹 = 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcof1oinvd.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 2 | fcof1oinvd.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) | |
| 3 | fcof1oinvd.b | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ) | |
| 4 | 3 | coeq2d | ⊢ ( 𝜑 → ( ◡ 𝐹 ∘ ( 𝐹 ∘ 𝐺 ) ) = ( ◡ 𝐹 ∘ ( I ↾ 𝐵 ) ) ) |
| 5 | coass | ⊢ ( ( ◡ 𝐹 ∘ 𝐹 ) ∘ 𝐺 ) = ( ◡ 𝐹 ∘ ( 𝐹 ∘ 𝐺 ) ) | |
| 6 | f1ococnv1 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) | |
| 7 | 1 6 | syl | ⊢ ( 𝜑 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) |
| 8 | 7 | coeq1d | ⊢ ( 𝜑 → ( ( ◡ 𝐹 ∘ 𝐹 ) ∘ 𝐺 ) = ( ( I ↾ 𝐴 ) ∘ 𝐺 ) ) |
| 9 | fcoi2 | ⊢ ( 𝐺 : 𝐵 ⟶ 𝐴 → ( ( I ↾ 𝐴 ) ∘ 𝐺 ) = 𝐺 ) | |
| 10 | 2 9 | syl | ⊢ ( 𝜑 → ( ( I ↾ 𝐴 ) ∘ 𝐺 ) = 𝐺 ) |
| 11 | 8 10 | eqtrd | ⊢ ( 𝜑 → ( ( ◡ 𝐹 ∘ 𝐹 ) ∘ 𝐺 ) = 𝐺 ) |
| 12 | 5 11 | eqtr3id | ⊢ ( 𝜑 → ( ◡ 𝐹 ∘ ( 𝐹 ∘ 𝐺 ) ) = 𝐺 ) |
| 13 | f1ocnv | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) | |
| 14 | f1of | ⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) | |
| 15 | fcoi1 | ⊢ ( ◡ 𝐹 : 𝐵 ⟶ 𝐴 → ( ◡ 𝐹 ∘ ( I ↾ 𝐵 ) ) = ◡ 𝐹 ) | |
| 16 | 1 13 14 15 | 4syl | ⊢ ( 𝜑 → ( ◡ 𝐹 ∘ ( I ↾ 𝐵 ) ) = ◡ 𝐹 ) |
| 17 | 4 12 16 | 3eqtr3rd | ⊢ ( 𝜑 → ◡ 𝐹 = 𝐺 ) |