This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that a function is the inverse of a bijective function if their composition is the identity function. Formerly part of proof of fcof1o . (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by AV, 15-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fcof1oinvd.f | |- ( ph -> F : A -1-1-onto-> B ) |
|
| fcof1oinvd.g | |- ( ph -> G : B --> A ) |
||
| fcof1oinvd.b | |- ( ph -> ( F o. G ) = ( _I |` B ) ) |
||
| Assertion | fcof1oinvd | |- ( ph -> `' F = G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcof1oinvd.f | |- ( ph -> F : A -1-1-onto-> B ) |
|
| 2 | fcof1oinvd.g | |- ( ph -> G : B --> A ) |
|
| 3 | fcof1oinvd.b | |- ( ph -> ( F o. G ) = ( _I |` B ) ) |
|
| 4 | 3 | coeq2d | |- ( ph -> ( `' F o. ( F o. G ) ) = ( `' F o. ( _I |` B ) ) ) |
| 5 | coass | |- ( ( `' F o. F ) o. G ) = ( `' F o. ( F o. G ) ) |
|
| 6 | f1ococnv1 | |- ( F : A -1-1-onto-> B -> ( `' F o. F ) = ( _I |` A ) ) |
|
| 7 | 1 6 | syl | |- ( ph -> ( `' F o. F ) = ( _I |` A ) ) |
| 8 | 7 | coeq1d | |- ( ph -> ( ( `' F o. F ) o. G ) = ( ( _I |` A ) o. G ) ) |
| 9 | fcoi2 | |- ( G : B --> A -> ( ( _I |` A ) o. G ) = G ) |
|
| 10 | 2 9 | syl | |- ( ph -> ( ( _I |` A ) o. G ) = G ) |
| 11 | 8 10 | eqtrd | |- ( ph -> ( ( `' F o. F ) o. G ) = G ) |
| 12 | 5 11 | eqtr3id | |- ( ph -> ( `' F o. ( F o. G ) ) = G ) |
| 13 | f1ocnv | |- ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A ) |
|
| 14 | f1of | |- ( `' F : B -1-1-onto-> A -> `' F : B --> A ) |
|
| 15 | fcoi1 | |- ( `' F : B --> A -> ( `' F o. ( _I |` B ) ) = `' F ) |
|
| 16 | 1 13 14 15 | 4syl | |- ( ph -> ( `' F o. ( _I |` B ) ) = `' F ) |
| 17 | 4 12 16 | 3eqtr3rd | |- ( ph -> `' F = G ) |