This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that a function is the inverse of a bijective function if their composition is the identity function. Formerly part of proof of fcof1o . (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by AV, 15-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fcof1oinvd.f | ||
| fcof1oinvd.g | |||
| fcof1oinvd.b | |||
| Assertion | fcof1oinvd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcof1oinvd.f | ||
| 2 | fcof1oinvd.g | ||
| 3 | fcof1oinvd.b | ||
| 4 | 3 | coeq2d | |
| 5 | coass | ||
| 6 | f1ococnv1 | ||
| 7 | 1 6 | syl | |
| 8 | 7 | coeq1d | |
| 9 | fcoi2 | ||
| 10 | 2 9 | syl | |
| 11 | 8 10 | eqtrd | |
| 12 | 5 11 | eqtr3id | |
| 13 | f1ocnv | ||
| 14 | f1of | ||
| 15 | fcoi1 | ||
| 16 | 1 13 14 15 | 4syl | |
| 17 | 4 12 16 | 3eqtr3rd |