This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An application is injective if a retraction exists. Proposition 8 of BourbakiEns p. E.II.18. (Contributed by FL, 11-Nov-2011) (Revised by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fcof1 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | simprr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 3 | 2 | fveq2d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑅 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑅 ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 4 | simpll | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 5 | simprll | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑥 ∈ 𝐴 ) | |
| 6 | fvco3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑅 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝑅 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 7 | 4 5 6 | syl2anc | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑅 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝑅 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 8 | simprlr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑦 ∈ 𝐴 ) | |
| 9 | fvco3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑅 ∘ 𝐹 ) ‘ 𝑦 ) = ( 𝑅 ‘ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 10 | 4 8 9 | syl2anc | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑅 ∘ 𝐹 ) ‘ 𝑦 ) = ( 𝑅 ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 11 | 3 7 10 | 3eqtr4d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑅 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝑅 ∘ 𝐹 ) ‘ 𝑦 ) ) |
| 12 | simplr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) | |
| 13 | 12 | fveq1d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑅 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ) |
| 14 | 12 | fveq1d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑅 ∘ 𝐹 ) ‘ 𝑦 ) = ( ( I ↾ 𝐴 ) ‘ 𝑦 ) ) |
| 15 | 11 13 14 | 3eqtr3d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑦 ) ) |
| 16 | fvresi | ⊢ ( 𝑥 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = 𝑥 ) | |
| 17 | 5 16 | syl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = 𝑥 ) |
| 18 | fvresi | ⊢ ( 𝑦 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑦 ) = 𝑦 ) | |
| 19 | 8 18 | syl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( I ↾ 𝐴 ) ‘ 𝑦 ) = 𝑦 ) |
| 20 | 15 17 19 | 3eqtr3d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑥 = 𝑦 ) |
| 21 | 20 | expr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 22 | 21 | ralrimivva | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 23 | dff13 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 24 | 1 22 23 | sylanbrc | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |