This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is bijective if a "retraction" and a "section" exist, see comments for fcof1 and fcofo . Formerly part of proof of fcof1o . (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by AV, 15-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fcof1od.f | ||
| fcof1od.g | |||
| fcof1od.a | |||
| fcof1od.b | |||
| Assertion | fcof1od |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcof1od.f | ||
| 2 | fcof1od.g | ||
| 3 | fcof1od.a | ||
| 4 | fcof1od.b | ||
| 5 | fcof1 | ||
| 6 | 1 3 5 | syl2anc | |
| 7 | fcofo | ||
| 8 | 1 2 4 7 | syl3anc | |
| 9 | df-f1o | ||
| 10 | 6 8 9 | sylanbrc |