This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for the cluster point predicate. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fclstopon | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fclstop | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → 𝐽 ∈ Top ) | |
| 2 | istopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽 ) ) | |
| 3 | 2 | baib | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝑋 = ∪ 𝐽 ) ) |
| 4 | 1 3 | syl | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝑋 = ∪ 𝐽 ) ) |
| 5 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 6 | 5 | fclsfil | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) |
| 7 | fveq2 | ⊢ ( 𝑋 = ∪ 𝐽 → ( Fil ‘ 𝑋 ) = ( Fil ‘ ∪ 𝐽 ) ) | |
| 8 | 7 | eleq2d | ⊢ ( 𝑋 = ∪ 𝐽 → ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ↔ 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) ) |
| 9 | 6 8 | syl5ibrcom | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ( 𝑋 = ∪ 𝐽 → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ) |
| 10 | filunibas | ⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) → ∪ 𝐹 = ∪ 𝐽 ) | |
| 11 | 6 10 | syl | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ∪ 𝐹 = ∪ 𝐽 ) |
| 12 | filunibas | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) | |
| 13 | 12 | eqeq1d | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∪ 𝐹 = ∪ 𝐽 ↔ 𝑋 = ∪ 𝐽 ) ) |
| 14 | 11 13 | syl5ibcom | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) ) |
| 15 | 9 14 | impbid | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ( 𝑋 = ∪ 𝐽 ↔ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ) |
| 16 | 4 15 | bitrd | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ) |