This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for the cluster point predicate. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fclstopon | |- ( A e. ( J fClus F ) -> ( J e. ( TopOn ` X ) <-> F e. ( Fil ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fclstop | |- ( A e. ( J fClus F ) -> J e. Top ) |
|
| 2 | istopon | |- ( J e. ( TopOn ` X ) <-> ( J e. Top /\ X = U. J ) ) |
|
| 3 | 2 | baib | |- ( J e. Top -> ( J e. ( TopOn ` X ) <-> X = U. J ) ) |
| 4 | 1 3 | syl | |- ( A e. ( J fClus F ) -> ( J e. ( TopOn ` X ) <-> X = U. J ) ) |
| 5 | eqid | |- U. J = U. J |
|
| 6 | 5 | fclsfil | |- ( A e. ( J fClus F ) -> F e. ( Fil ` U. J ) ) |
| 7 | fveq2 | |- ( X = U. J -> ( Fil ` X ) = ( Fil ` U. J ) ) |
|
| 8 | 7 | eleq2d | |- ( X = U. J -> ( F e. ( Fil ` X ) <-> F e. ( Fil ` U. J ) ) ) |
| 9 | 6 8 | syl5ibrcom | |- ( A e. ( J fClus F ) -> ( X = U. J -> F e. ( Fil ` X ) ) ) |
| 10 | filunibas | |- ( F e. ( Fil ` U. J ) -> U. F = U. J ) |
|
| 11 | 6 10 | syl | |- ( A e. ( J fClus F ) -> U. F = U. J ) |
| 12 | filunibas | |- ( F e. ( Fil ` X ) -> U. F = X ) |
|
| 13 | 12 | eqeq1d | |- ( F e. ( Fil ` X ) -> ( U. F = U. J <-> X = U. J ) ) |
| 14 | 11 13 | syl5ibcom | |- ( A e. ( J fClus F ) -> ( F e. ( Fil ` X ) -> X = U. J ) ) |
| 15 | 9 14 | impbid | |- ( A e. ( J fClus F ) -> ( X = U. J <-> F e. ( Fil ` X ) ) ) |
| 16 | 4 15 | bitrd | |- ( A e. ( J fClus F ) -> ( J e. ( TopOn ` X ) <-> F e. ( Fil ` X ) ) ) |