This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of cluster points is a subset of the closure of any filter element. (Contributed by Mario Carneiro, 11-Apr-2015) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fclssscls | ⊢ ( 𝑆 ∈ 𝐹 → ( 𝐽 fClus 𝐹 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | isfcls | ⊢ ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ∧ ∀ 𝑠 ∈ 𝐹 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
| 3 | 2 | simp3bi | ⊢ ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) → ∀ 𝑠 ∈ 𝐹 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) |
| 4 | fveq2 | ⊢ ( 𝑠 = 𝑆 → ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) = ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) | |
| 5 | 4 | eleq2d | ⊢ ( 𝑠 = 𝑆 → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ↔ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 6 | 5 | rspcv | ⊢ ( 𝑆 ∈ 𝐹 → ( ∀ 𝑠 ∈ 𝐹 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 7 | 3 6 | syl5 | ⊢ ( 𝑆 ∈ 𝐹 → ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 8 | 7 | ssrdv | ⊢ ( 𝑆 ∈ 𝐹 → ( 𝐽 fClus 𝐹 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |