This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of cluster points is a subset of the closure of any filter element. (Contributed by Mario Carneiro, 11-Apr-2015) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fclssscls | |- ( S e. F -> ( J fClus F ) C_ ( ( cls ` J ) ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- U. J = U. J |
|
| 2 | 1 | isfcls | |- ( x e. ( J fClus F ) <-> ( J e. Top /\ F e. ( Fil ` U. J ) /\ A. s e. F x e. ( ( cls ` J ) ` s ) ) ) |
| 3 | 2 | simp3bi | |- ( x e. ( J fClus F ) -> A. s e. F x e. ( ( cls ` J ) ` s ) ) |
| 4 | fveq2 | |- ( s = S -> ( ( cls ` J ) ` s ) = ( ( cls ` J ) ` S ) ) |
|
| 5 | 4 | eleq2d | |- ( s = S -> ( x e. ( ( cls ` J ) ` s ) <-> x e. ( ( cls ` J ) ` S ) ) ) |
| 6 | 5 | rspcv | |- ( S e. F -> ( A. s e. F x e. ( ( cls ` J ) ` s ) -> x e. ( ( cls ` J ) ` S ) ) ) |
| 7 | 3 6 | syl5 | |- ( S e. F -> ( x e. ( J fClus F ) -> x e. ( ( cls ` J ) ` S ) ) ) |
| 8 | 7 | ssrdv | |- ( S e. F -> ( J fClus F ) C_ ( ( cls ` J ) ` S ) ) |