This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A neighborhood of a cluster point of a filter intersects any element of that filter. (Contributed by Jeff Hankins, 11-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fclsneii | |- ( ( A e. ( J fClus F ) /\ N e. ( ( nei ` J ) ` { A } ) /\ S e. F ) -> ( N i^i S ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. ( J fClus F ) /\ N e. ( ( nei ` J ) ` { A } ) /\ S e. F ) -> A e. ( J fClus F ) ) |
|
| 2 | fclstop | |- ( A e. ( J fClus F ) -> J e. Top ) |
|
| 3 | 1 2 | syl | |- ( ( A e. ( J fClus F ) /\ N e. ( ( nei ` J ) ` { A } ) /\ S e. F ) -> J e. Top ) |
| 4 | simp2 | |- ( ( A e. ( J fClus F ) /\ N e. ( ( nei ` J ) ` { A } ) /\ S e. F ) -> N e. ( ( nei ` J ) ` { A } ) ) |
|
| 5 | eqid | |- U. J = U. J |
|
| 6 | 5 | neii1 | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` { A } ) ) -> N C_ U. J ) |
| 7 | 3 4 6 | syl2anc | |- ( ( A e. ( J fClus F ) /\ N e. ( ( nei ` J ) ` { A } ) /\ S e. F ) -> N C_ U. J ) |
| 8 | 5 | ntrss2 | |- ( ( J e. Top /\ N C_ U. J ) -> ( ( int ` J ) ` N ) C_ N ) |
| 9 | 3 7 8 | syl2anc | |- ( ( A e. ( J fClus F ) /\ N e. ( ( nei ` J ) ` { A } ) /\ S e. F ) -> ( ( int ` J ) ` N ) C_ N ) |
| 10 | 9 | ssrind | |- ( ( A e. ( J fClus F ) /\ N e. ( ( nei ` J ) ` { A } ) /\ S e. F ) -> ( ( ( int ` J ) ` N ) i^i S ) C_ ( N i^i S ) ) |
| 11 | 5 | ntropn | |- ( ( J e. Top /\ N C_ U. J ) -> ( ( int ` J ) ` N ) e. J ) |
| 12 | 3 7 11 | syl2anc | |- ( ( A e. ( J fClus F ) /\ N e. ( ( nei ` J ) ` { A } ) /\ S e. F ) -> ( ( int ` J ) ` N ) e. J ) |
| 13 | 5 | fclselbas | |- ( A e. ( J fClus F ) -> A e. U. J ) |
| 14 | 1 13 | syl | |- ( ( A e. ( J fClus F ) /\ N e. ( ( nei ` J ) ` { A } ) /\ S e. F ) -> A e. U. J ) |
| 15 | 14 | snssd | |- ( ( A e. ( J fClus F ) /\ N e. ( ( nei ` J ) ` { A } ) /\ S e. F ) -> { A } C_ U. J ) |
| 16 | 5 | neiint | |- ( ( J e. Top /\ { A } C_ U. J /\ N C_ U. J ) -> ( N e. ( ( nei ` J ) ` { A } ) <-> { A } C_ ( ( int ` J ) ` N ) ) ) |
| 17 | 3 15 7 16 | syl3anc | |- ( ( A e. ( J fClus F ) /\ N e. ( ( nei ` J ) ` { A } ) /\ S e. F ) -> ( N e. ( ( nei ` J ) ` { A } ) <-> { A } C_ ( ( int ` J ) ` N ) ) ) |
| 18 | 4 17 | mpbid | |- ( ( A e. ( J fClus F ) /\ N e. ( ( nei ` J ) ` { A } ) /\ S e. F ) -> { A } C_ ( ( int ` J ) ` N ) ) |
| 19 | snssg | |- ( A e. U. J -> ( A e. ( ( int ` J ) ` N ) <-> { A } C_ ( ( int ` J ) ` N ) ) ) |
|
| 20 | 14 19 | syl | |- ( ( A e. ( J fClus F ) /\ N e. ( ( nei ` J ) ` { A } ) /\ S e. F ) -> ( A e. ( ( int ` J ) ` N ) <-> { A } C_ ( ( int ` J ) ` N ) ) ) |
| 21 | 18 20 | mpbird | |- ( ( A e. ( J fClus F ) /\ N e. ( ( nei ` J ) ` { A } ) /\ S e. F ) -> A e. ( ( int ` J ) ` N ) ) |
| 22 | simp3 | |- ( ( A e. ( J fClus F ) /\ N e. ( ( nei ` J ) ` { A } ) /\ S e. F ) -> S e. F ) |
|
| 23 | fclsopni | |- ( ( A e. ( J fClus F ) /\ ( ( ( int ` J ) ` N ) e. J /\ A e. ( ( int ` J ) ` N ) /\ S e. F ) ) -> ( ( ( int ` J ) ` N ) i^i S ) =/= (/) ) |
|
| 24 | 1 12 21 22 23 | syl13anc | |- ( ( A e. ( J fClus F ) /\ N e. ( ( nei ` J ) ` { A } ) /\ S e. F ) -> ( ( ( int ` J ) ` N ) i^i S ) =/= (/) ) |
| 25 | ssn0 | |- ( ( ( ( ( int ` J ) ` N ) i^i S ) C_ ( N i^i S ) /\ ( ( ( int ` J ) ` N ) i^i S ) =/= (/) ) -> ( N i^i S ) =/= (/) ) |
|
| 26 | 10 24 25 | syl2anc | |- ( ( A e. ( J fClus F ) /\ N e. ( ( nei ` J ) ` { A } ) /\ S e. F ) -> ( N i^i S ) =/= (/) ) |