This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a cluster point of a function in terms of neighborhoods. (Contributed by Jeff Hankins, 26-Nov-2009) (Revised by Stefan O'Rear, 9-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fcfnei | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfcf | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) ) ) | |
| 2 | simpll1 | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 3 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 4 | 2 3 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐽 ∈ Top ) |
| 5 | simpr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) | |
| 6 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 7 | 6 | neii1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑛 ⊆ ∪ 𝐽 ) |
| 8 | 4 5 7 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑛 ⊆ ∪ 𝐽 ) |
| 9 | 6 | ntrss2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑛 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ⊆ 𝑛 ) |
| 10 | 4 8 9 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ⊆ 𝑛 ) |
| 11 | simplr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐴 ∈ 𝑋 ) | |
| 12 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 13 | 2 12 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑋 = ∪ 𝐽 ) |
| 14 | 11 13 | eleqtrd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐴 ∈ ∪ 𝐽 ) |
| 15 | 14 | snssd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → { 𝐴 } ⊆ ∪ 𝐽 ) |
| 16 | 6 | neiint | ⊢ ( ( 𝐽 ∈ Top ∧ { 𝐴 } ⊆ ∪ 𝐽 ∧ 𝑛 ⊆ ∪ 𝐽 ) → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ↔ { 𝐴 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ) ) |
| 17 | 4 15 8 16 | syl3anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ↔ { 𝐴 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ) ) |
| 18 | 5 17 | mpbid | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → { 𝐴 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ) |
| 19 | snssg | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ↔ { 𝐴 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ) ) | |
| 20 | 11 19 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ↔ { 𝐴 } ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ) ) |
| 21 | 18 20 | mpbird | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ) |
| 22 | 6 | ntropn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑛 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∈ 𝐽 ) |
| 23 | 4 8 22 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∈ 𝐽 ) |
| 24 | eleq2 | ⊢ ( 𝑜 = ( ( int ‘ 𝐽 ) ‘ 𝑛 ) → ( 𝐴 ∈ 𝑜 ↔ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ) ) | |
| 25 | ineq1 | ⊢ ( 𝑜 = ( ( int ‘ 𝐽 ) ‘ 𝑛 ) → ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) = ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ) | |
| 26 | 25 | neeq1d | ⊢ ( 𝑜 = ( ( int ‘ 𝐽 ) ‘ 𝑛 ) → ( ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ↔ ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
| 27 | 26 | ralbidv | ⊢ ( 𝑜 = ( ( int ‘ 𝐽 ) ‘ 𝑛 ) → ( ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ↔ ∀ 𝑠 ∈ 𝐿 ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
| 28 | 24 27 | imbi12d | ⊢ ( 𝑜 = ( ( int ‘ 𝐽 ) ‘ 𝑛 ) → ( ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ↔ ( 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑛 ) → ∀ 𝑠 ∈ 𝐿 ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) ) |
| 29 | 28 | rspcv | ⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∈ 𝐽 → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) → ( 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑛 ) → ∀ 𝑠 ∈ 𝐿 ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) ) |
| 30 | 23 29 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) → ( 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑛 ) → ∀ 𝑠 ∈ 𝐿 ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) ) |
| 31 | 21 30 | mpid | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) → ∀ 𝑠 ∈ 𝐿 ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
| 32 | ssrin | ⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ⊆ 𝑛 → ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ⊆ ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ) | |
| 33 | ssn0 | ⊢ ( ( ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ⊆ ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ∧ ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) → ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) | |
| 34 | 33 | ex | ⊢ ( ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ⊆ ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) → ( ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ → ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
| 35 | 32 34 | syl | ⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ⊆ 𝑛 → ( ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ → ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
| 36 | 35 | ralimdv | ⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ⊆ 𝑛 → ( ∀ 𝑠 ∈ 𝐿 ( ( ( int ‘ 𝐽 ) ‘ 𝑛 ) ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ → ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
| 37 | 10 31 36 | sylsyld | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) → ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
| 38 | 37 | ralrimdva | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) → ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
| 39 | simpl1 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 40 | 39 3 | syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ Top ) |
| 41 | opnneip | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ) → 𝑜 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) | |
| 42 | 41 | 3expb | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ) ) → 𝑜 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| 43 | 40 42 | sylan | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ) ) → 𝑜 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| 44 | ineq1 | ⊢ ( 𝑛 = 𝑜 → ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) = ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ) | |
| 45 | 44 | neeq1d | ⊢ ( 𝑛 = 𝑜 → ( ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ↔ ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
| 46 | 45 | ralbidv | ⊢ ( 𝑛 = 𝑜 → ( ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ↔ ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
| 47 | 46 | rspcv | ⊢ ( 𝑜 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
| 48 | 43 47 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ) ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
| 49 | 48 | expr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( 𝐴 ∈ 𝑜 → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) ) |
| 50 | 49 | com23 | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ → ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) ) |
| 51 | 50 | ralrimdva | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ → ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) ) |
| 52 | 38 51 | impbid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ↔ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) |
| 53 | 52 | pm5.32da | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐿 ( 𝑜 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) ) |
| 54 | 1 53 | bitrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐿 ( 𝑛 ∩ ( 𝐹 “ 𝑠 ) ) ≠ ∅ ) ) ) |