This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition for a filter base B to converge to a point A . Use neighborhoods instead of open neighborhoods. Compare fbflim . (Contributed by FL, 4-Jul-2011) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fbflim.3 | ⊢ 𝐹 = ( 𝑋 filGen 𝐵 ) | |
| Assertion | fbflim2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fbflim.3 | ⊢ 𝐹 = ( 𝑋 filGen 𝐵 ) | |
| 2 | 1 | fbflim | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) ) ) |
| 3 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 4 | 3 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ Top ) |
| 5 | simpr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 6 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 7 | 6 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 8 | 5 7 | eleqtrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ ∪ 𝐽 ) |
| 9 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 10 | 9 | isneip | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ ∪ 𝐽 ) → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ↔ ( 𝑛 ⊆ ∪ 𝐽 ∧ ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) ) ) |
| 11 | 4 8 10 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ↔ ( 𝑛 ⊆ ∪ 𝐽 ∧ ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) ) ) |
| 12 | simpr | ⊢ ( ( 𝑛 ⊆ ∪ 𝐽 ∧ ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) → ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) | |
| 13 | 11 12 | biimtrdi | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) ) |
| 14 | r19.29 | ⊢ ( ( ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ∧ ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) → ∃ 𝑦 ∈ 𝐽 ( ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ∧ ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) ) | |
| 15 | pm3.45 | ⊢ ( ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) → ( ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) → ( ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) ) | |
| 16 | 15 | imp | ⊢ ( ( ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ∧ ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) → ( ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) |
| 17 | sstr2 | ⊢ ( 𝑥 ⊆ 𝑦 → ( 𝑦 ⊆ 𝑛 → 𝑥 ⊆ 𝑛 ) ) | |
| 18 | 17 | com12 | ⊢ ( 𝑦 ⊆ 𝑛 → ( 𝑥 ⊆ 𝑦 → 𝑥 ⊆ 𝑛 ) ) |
| 19 | 18 | reximdv | ⊢ ( 𝑦 ⊆ 𝑛 → ( ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ) ) |
| 20 | 19 | impcom | ⊢ ( ( ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ) |
| 21 | 16 20 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ∧ ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ) |
| 22 | 21 | rexlimivw | ⊢ ( ∃ 𝑦 ∈ 𝐽 ( ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ∧ ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ) |
| 23 | 14 22 | syl | ⊢ ( ( ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ∧ ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) ) → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ) |
| 24 | 23 | ex | ⊢ ( ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) → ( ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛 ) → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ) ) |
| 25 | 13 24 | syl9 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ) ) ) |
| 26 | 25 | ralrimdv | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) → ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ) ) |
| 27 | 4 | adantr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦 ) ) → 𝐽 ∈ Top ) |
| 28 | simprl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦 ) ) → 𝑦 ∈ 𝐽 ) | |
| 29 | simprr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦 ) ) → 𝐴 ∈ 𝑦 ) | |
| 30 | opnneip | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦 ) → 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) | |
| 31 | 27 28 29 30 | syl3anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦 ) ) → 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| 32 | sseq2 | ⊢ ( 𝑛 = 𝑦 → ( 𝑥 ⊆ 𝑛 ↔ 𝑥 ⊆ 𝑦 ) ) | |
| 33 | 32 | rexbidv | ⊢ ( 𝑛 = 𝑦 → ( ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ↔ ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) |
| 34 | 33 | rspcv | ⊢ ( 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) |
| 35 | 31 34 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦 ) ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) |
| 36 | 35 | expr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝐴 ∈ 𝑦 → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) ) |
| 37 | 36 | com23 | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝐽 ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 → ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) ) |
| 38 | 37 | ralrimdva | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 → ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) ) |
| 39 | 26 38 | impbid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ↔ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ) ) |
| 40 | 39 | pm5.32da | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → ( ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ) ) ) |
| 41 | 2 40 | bitrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ) ) ) |