This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a filter base is nonempty. (Contributed by Mario Carneiro, 28-Nov-2013) (Revised by Stefan O'Rear, 28-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fbdmn0 | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → 𝐵 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelfb | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ¬ ∅ ∈ 𝐹 ) | |
| 2 | fveq2 | ⊢ ( 𝐵 = ∅ → ( fBas ‘ 𝐵 ) = ( fBas ‘ ∅ ) ) | |
| 3 | 2 | eleq2d | ⊢ ( 𝐵 = ∅ → ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ↔ 𝐹 ∈ ( fBas ‘ ∅ ) ) ) |
| 4 | 3 | biimpd | ⊢ ( 𝐵 = ∅ → ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → 𝐹 ∈ ( fBas ‘ ∅ ) ) ) |
| 5 | fbasne0 | ⊢ ( 𝐹 ∈ ( fBas ‘ ∅ ) → 𝐹 ≠ ∅ ) | |
| 6 | n0 | ⊢ ( 𝐹 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐹 ) | |
| 7 | 5 6 | sylib | ⊢ ( 𝐹 ∈ ( fBas ‘ ∅ ) → ∃ 𝑥 𝑥 ∈ 𝐹 ) |
| 8 | fbelss | ⊢ ( ( 𝐹 ∈ ( fBas ‘ ∅ ) ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ⊆ ∅ ) | |
| 9 | ss0 | ⊢ ( 𝑥 ⊆ ∅ → 𝑥 = ∅ ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐹 ∈ ( fBas ‘ ∅ ) ∧ 𝑥 ∈ 𝐹 ) → 𝑥 = ∅ ) |
| 11 | simpr | ⊢ ( ( 𝐹 ∈ ( fBas ‘ ∅ ) ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ∈ 𝐹 ) | |
| 12 | 10 11 | eqeltrrd | ⊢ ( ( 𝐹 ∈ ( fBas ‘ ∅ ) ∧ 𝑥 ∈ 𝐹 ) → ∅ ∈ 𝐹 ) |
| 13 | 7 12 | exlimddv | ⊢ ( 𝐹 ∈ ( fBas ‘ ∅ ) → ∅ ∈ 𝐹 ) |
| 14 | 4 13 | syl6com | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ( 𝐵 = ∅ → ∅ ∈ 𝐹 ) ) |
| 15 | 14 | necon3bd | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ( ¬ ∅ ∈ 𝐹 → 𝐵 ≠ ∅ ) ) |
| 16 | 1 15 | mpd | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → 𝐵 ≠ ∅ ) |