This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a filter base is nonempty. (Contributed by Mario Carneiro, 28-Nov-2013) (Revised by Stefan O'Rear, 28-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fbdmn0 | |- ( F e. ( fBas ` B ) -> B =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelfb | |- ( F e. ( fBas ` B ) -> -. (/) e. F ) |
|
| 2 | fveq2 | |- ( B = (/) -> ( fBas ` B ) = ( fBas ` (/) ) ) |
|
| 3 | 2 | eleq2d | |- ( B = (/) -> ( F e. ( fBas ` B ) <-> F e. ( fBas ` (/) ) ) ) |
| 4 | 3 | biimpd | |- ( B = (/) -> ( F e. ( fBas ` B ) -> F e. ( fBas ` (/) ) ) ) |
| 5 | fbasne0 | |- ( F e. ( fBas ` (/) ) -> F =/= (/) ) |
|
| 6 | n0 | |- ( F =/= (/) <-> E. x x e. F ) |
|
| 7 | 5 6 | sylib | |- ( F e. ( fBas ` (/) ) -> E. x x e. F ) |
| 8 | fbelss | |- ( ( F e. ( fBas ` (/) ) /\ x e. F ) -> x C_ (/) ) |
|
| 9 | ss0 | |- ( x C_ (/) -> x = (/) ) |
|
| 10 | 8 9 | syl | |- ( ( F e. ( fBas ` (/) ) /\ x e. F ) -> x = (/) ) |
| 11 | simpr | |- ( ( F e. ( fBas ` (/) ) /\ x e. F ) -> x e. F ) |
|
| 12 | 10 11 | eqeltrrd | |- ( ( F e. ( fBas ` (/) ) /\ x e. F ) -> (/) e. F ) |
| 13 | 7 12 | exlimddv | |- ( F e. ( fBas ` (/) ) -> (/) e. F ) |
| 14 | 4 13 | syl6com | |- ( F e. ( fBas ` B ) -> ( B = (/) -> (/) e. F ) ) |
| 15 | 14 | necon3bd | |- ( F e. ( fBas ` B ) -> ( -. (/) e. F -> B =/= (/) ) ) |
| 16 | 1 15 | mpd | |- ( F e. ( fBas ` B ) -> B =/= (/) ) |