This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of f1omo as of 24-Nov-2025. (Contributed by Zhi Wang, 19-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f1omo.1 | ⊢ ( 𝜑 → 𝐹 = ( 𝐴 × { 1o } ) ) | |
| Assertion | f1omoOLD | ⊢ ( 𝜑 → ∃* 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1omo.1 | ⊢ ( 𝜑 → 𝐹 = ( 𝐴 × { 1o } ) ) | |
| 2 | 1oex | ⊢ 1o ∈ V | |
| 3 | eqid | ⊢ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) | |
| 4 | 2 3 | fvconst0ci | ⊢ ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = ∅ ∨ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = 1o ) |
| 5 | mo0 | ⊢ ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = ∅ → ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) | |
| 6 | el1o | ⊢ ( 𝑦 ∈ 1o ↔ 𝑦 = ∅ ) | |
| 7 | el1o | ⊢ ( 𝑥 ∈ 1o ↔ 𝑥 = ∅ ) | |
| 8 | eqtr3 | ⊢ ( ( 𝑦 = ∅ ∧ 𝑥 = ∅ ) → 𝑦 = 𝑥 ) | |
| 9 | 6 7 8 | syl2anb | ⊢ ( ( 𝑦 ∈ 1o ∧ 𝑥 ∈ 1o ) → 𝑦 = 𝑥 ) |
| 10 | 9 | gen2 | ⊢ ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 1o ∧ 𝑥 ∈ 1o ) → 𝑦 = 𝑥 ) |
| 11 | eleq1w | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 1o ↔ 𝑥 ∈ 1o ) ) | |
| 12 | 11 | mo4 | ⊢ ( ∃* 𝑦 𝑦 ∈ 1o ↔ ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 1o ∧ 𝑥 ∈ 1o ) → 𝑦 = 𝑥 ) ) |
| 13 | 10 12 | mpbir | ⊢ ∃* 𝑦 𝑦 ∈ 1o |
| 14 | eleq2w2 | ⊢ ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = 1o → ( 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ↔ 𝑦 ∈ 1o ) ) | |
| 15 | 14 | mobidv | ⊢ ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = 1o → ( ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ↔ ∃* 𝑦 𝑦 ∈ 1o ) ) |
| 16 | 13 15 | mpbiri | ⊢ ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = 1o → ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) |
| 17 | 5 16 | jaoi | ⊢ ( ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = ∅ ∨ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = 1o ) → ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) |
| 18 | 4 17 | ax-mp | ⊢ ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) |
| 19 | 1 | fveq1d | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) |
| 20 | 19 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐹 ‘ 𝑋 ) ↔ 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) ) |
| 21 | 20 | mobidv | ⊢ ( 𝜑 → ( ∃* 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑋 ) ↔ ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) ) |
| 22 | 18 21 | mpbiri | ⊢ ( 𝜑 → ∃* 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑋 ) ) |