This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant function's value is either the constant or the empty set. (An artifact of our function value definition.) (Contributed by Zhi Wang, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvconst0ci.1 | ⊢ 𝐵 ∈ V | |
| fvconst0ci.2 | ⊢ 𝑌 = ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) | ||
| Assertion | fvconst0ci | ⊢ ( 𝑌 = ∅ ∨ 𝑌 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvconst0ci.1 | ⊢ 𝐵 ∈ V | |
| 2 | fvconst0ci.2 | ⊢ 𝑌 = ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) | |
| 3 | dmxpss | ⊢ dom ( 𝐴 × { 𝐵 } ) ⊆ 𝐴 | |
| 4 | 3 | sseli | ⊢ ( 𝑋 ∈ dom ( 𝐴 × { 𝐵 } ) → 𝑋 ∈ 𝐴 ) |
| 5 | 1 | fvconst2 | ⊢ ( 𝑋 ∈ 𝐴 → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) = 𝐵 ) |
| 6 | 4 5 | syl | ⊢ ( 𝑋 ∈ dom ( 𝐴 × { 𝐵 } ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) = 𝐵 ) |
| 7 | 2 6 | eqtrid | ⊢ ( 𝑋 ∈ dom ( 𝐴 × { 𝐵 } ) → 𝑌 = 𝐵 ) |
| 8 | 7 | olcd | ⊢ ( 𝑋 ∈ dom ( 𝐴 × { 𝐵 } ) → ( 𝑌 = ∅ ∨ 𝑌 = 𝐵 ) ) |
| 9 | ndmfv | ⊢ ( ¬ 𝑋 ∈ dom ( 𝐴 × { 𝐵 } ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) = ∅ ) | |
| 10 | 2 9 | eqtrid | ⊢ ( ¬ 𝑋 ∈ dom ( 𝐴 × { 𝐵 } ) → 𝑌 = ∅ ) |
| 11 | 10 | orcd | ⊢ ( ¬ 𝑋 ∈ dom ( 𝐴 × { 𝐵 } ) → ( 𝑌 = ∅ ∨ 𝑌 = 𝐵 ) ) |
| 12 | 8 11 | pm2.61i | ⊢ ( 𝑌 = ∅ ∨ 𝑌 = 𝐵 ) |