This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of f1omo as of 24-Nov-2025. (Contributed by Zhi Wang, 19-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f1omo.1 | |- ( ph -> F = ( A X. { 1o } ) ) |
|
| Assertion | f1omoOLD | |- ( ph -> E* y y e. ( F ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1omo.1 | |- ( ph -> F = ( A X. { 1o } ) ) |
|
| 2 | 1oex | |- 1o e. _V |
|
| 3 | eqid | |- ( ( A X. { 1o } ) ` X ) = ( ( A X. { 1o } ) ` X ) |
|
| 4 | 2 3 | fvconst0ci | |- ( ( ( A X. { 1o } ) ` X ) = (/) \/ ( ( A X. { 1o } ) ` X ) = 1o ) |
| 5 | mo0 | |- ( ( ( A X. { 1o } ) ` X ) = (/) -> E* y y e. ( ( A X. { 1o } ) ` X ) ) |
|
| 6 | el1o | |- ( y e. 1o <-> y = (/) ) |
|
| 7 | el1o | |- ( x e. 1o <-> x = (/) ) |
|
| 8 | eqtr3 | |- ( ( y = (/) /\ x = (/) ) -> y = x ) |
|
| 9 | 6 7 8 | syl2anb | |- ( ( y e. 1o /\ x e. 1o ) -> y = x ) |
| 10 | 9 | gen2 | |- A. y A. x ( ( y e. 1o /\ x e. 1o ) -> y = x ) |
| 11 | eleq1w | |- ( y = x -> ( y e. 1o <-> x e. 1o ) ) |
|
| 12 | 11 | mo4 | |- ( E* y y e. 1o <-> A. y A. x ( ( y e. 1o /\ x e. 1o ) -> y = x ) ) |
| 13 | 10 12 | mpbir | |- E* y y e. 1o |
| 14 | eleq2w2 | |- ( ( ( A X. { 1o } ) ` X ) = 1o -> ( y e. ( ( A X. { 1o } ) ` X ) <-> y e. 1o ) ) |
|
| 15 | 14 | mobidv | |- ( ( ( A X. { 1o } ) ` X ) = 1o -> ( E* y y e. ( ( A X. { 1o } ) ` X ) <-> E* y y e. 1o ) ) |
| 16 | 13 15 | mpbiri | |- ( ( ( A X. { 1o } ) ` X ) = 1o -> E* y y e. ( ( A X. { 1o } ) ` X ) ) |
| 17 | 5 16 | jaoi | |- ( ( ( ( A X. { 1o } ) ` X ) = (/) \/ ( ( A X. { 1o } ) ` X ) = 1o ) -> E* y y e. ( ( A X. { 1o } ) ` X ) ) |
| 18 | 4 17 | ax-mp | |- E* y y e. ( ( A X. { 1o } ) ` X ) |
| 19 | 1 | fveq1d | |- ( ph -> ( F ` X ) = ( ( A X. { 1o } ) ` X ) ) |
| 20 | 19 | eleq2d | |- ( ph -> ( y e. ( F ` X ) <-> y e. ( ( A X. { 1o } ) ` X ) ) ) |
| 21 | 20 | mobidv | |- ( ph -> ( E* y y e. ( F ` X ) <-> E* y y e. ( ( A X. { 1o } ) ` X ) ) ) |
| 22 | 18 21 | mpbiri | |- ( ph -> E* y y e. ( F ` X ) ) |