This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant function's value is dominated by the constant. (An artifact of our function value definition.) (Contributed by Zhi Wang, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fvconstdomi.1 | ⊢ 𝐵 ∈ V | |
| Assertion | fvconstdomi | ⊢ ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) ≼ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvconstdomi.1 | ⊢ 𝐵 ∈ V | |
| 2 | dmxpss | ⊢ dom ( 𝐴 × { 𝐵 } ) ⊆ 𝐴 | |
| 3 | 2 | sseli | ⊢ ( 𝑋 ∈ dom ( 𝐴 × { 𝐵 } ) → 𝑋 ∈ 𝐴 ) |
| 4 | 1 | fvconst2 | ⊢ ( 𝑋 ∈ 𝐴 → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) = 𝐵 ) |
| 5 | 3 4 | syl | ⊢ ( 𝑋 ∈ dom ( 𝐴 × { 𝐵 } ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) = 𝐵 ) |
| 6 | domrefg | ⊢ ( 𝐵 ∈ V → 𝐵 ≼ 𝐵 ) | |
| 7 | 1 6 | ax-mp | ⊢ 𝐵 ≼ 𝐵 |
| 8 | 5 7 | eqbrtrdi | ⊢ ( 𝑋 ∈ dom ( 𝐴 × { 𝐵 } ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) ≼ 𝐵 ) |
| 9 | ndmfv | ⊢ ( ¬ 𝑋 ∈ dom ( 𝐴 × { 𝐵 } ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) = ∅ ) | |
| 10 | 1 | 0dom | ⊢ ∅ ≼ 𝐵 |
| 11 | 9 10 | eqbrtrdi | ⊢ ( ¬ 𝑋 ∈ dom ( 𝐴 × { 𝐵 } ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) ≼ 𝐵 ) |
| 12 | 8 11 | pm2.61i | ⊢ ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) ≼ 𝐵 |