This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant function from at least two elements is not one-to-one. (Contributed by AV, 30-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nf1const | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) ) → ¬ 𝐹 : 𝐴 –1-1→ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) → 𝑋 ∈ 𝐴 ) | |
| 2 | simp2 | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) → 𝑌 ∈ 𝐴 ) | |
| 3 | fvconst | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑋 ) = 𝐵 ) | |
| 4 | 1 3 | sylan2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝐵 ) |
| 5 | fvconst | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ 𝑌 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑌 ) = 𝐵 ) | |
| 6 | 2 5 | sylan2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑌 ) = 𝐵 ) |
| 7 | 4 6 | eqtr4d | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 8 | neneq | ⊢ ( 𝑋 ≠ 𝑌 → ¬ 𝑋 = 𝑌 ) | |
| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) → ¬ 𝑋 = 𝑌 ) |
| 10 | 9 | adantl | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) ) → ¬ 𝑋 = 𝑌 ) |
| 11 | 7 10 | jcnd | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) ) → ¬ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) |
| 12 | fveqeq2 | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) ) ) | |
| 13 | eqeq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 = 𝑦 ↔ 𝑋 = 𝑦 ) ) | |
| 14 | 12 13 | imbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ) ) |
| 15 | 14 | notbid | ⊢ ( 𝑥 = 𝑋 → ( ¬ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ¬ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ) ) |
| 16 | fveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑌 ) ) | |
| 17 | 16 | eqeq2d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) ) |
| 18 | eqeq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 = 𝑦 ↔ 𝑋 = 𝑌 ) ) | |
| 19 | 17 18 | imbi12d | ⊢ ( 𝑦 = 𝑌 → ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) |
| 20 | 19 | notbid | ⊢ ( 𝑦 = 𝑌 → ( ¬ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ↔ ¬ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) |
| 21 | 15 20 | rspc2ev | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ ¬ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 22 | 1 2 11 21 | syl2an23an | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 23 | rexnal2 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) | |
| 24 | 22 23 | sylib | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) ) → ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 25 | 24 | olcd | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) ) → ( ¬ 𝐹 : 𝐴 ⟶ 𝐶 ∨ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 26 | ianor | ⊢ ( ¬ ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ↔ ( ¬ 𝐹 : 𝐴 ⟶ 𝐶 ∨ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 27 | dff13 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐶 ↔ ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 28 | 26 27 | xchnxbir | ⊢ ( ¬ 𝐹 : 𝐴 –1-1→ 𝐶 ↔ ( ¬ 𝐹 : 𝐴 ⟶ 𝐶 ∨ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 29 | 25 28 | sylibr | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) ) → ¬ 𝐹 : 𝐴 –1-1→ 𝐶 ) |