This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the codomain of a one-to-one function is finite, then the function's domain is dominated by its codomain. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1domg ). (Contributed by BTernaryTau, 25-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1domfi | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐴 ≼ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1cnv | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ◡ 𝐹 : ran 𝐹 –1-1-onto→ 𝐴 ) | |
| 2 | f1f | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 3 | 2 | frnd | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ran 𝐹 ⊆ 𝐵 ) |
| 4 | ssfi | ⊢ ( ( 𝐵 ∈ Fin ∧ ran 𝐹 ⊆ 𝐵 ) → ran 𝐹 ∈ Fin ) | |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ran 𝐹 ∈ Fin ) |
| 6 | f1ofn | ⊢ ( ◡ 𝐹 : ran 𝐹 –1-1-onto→ 𝐴 → ◡ 𝐹 Fn ran 𝐹 ) | |
| 7 | fnfi | ⊢ ( ( ◡ 𝐹 Fn ran 𝐹 ∧ ran 𝐹 ∈ Fin ) → ◡ 𝐹 ∈ Fin ) | |
| 8 | 6 7 | sylan | ⊢ ( ( ◡ 𝐹 : ran 𝐹 –1-1-onto→ 𝐴 ∧ ran 𝐹 ∈ Fin ) → ◡ 𝐹 ∈ Fin ) |
| 9 | 1 5 8 | syl2an2 | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ◡ 𝐹 ∈ Fin ) |
| 10 | cnvfi | ⊢ ( ◡ 𝐹 ∈ Fin → ◡ ◡ 𝐹 ∈ Fin ) | |
| 11 | f1rel | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → Rel 𝐹 ) | |
| 12 | dfrel2 | ⊢ ( Rel 𝐹 ↔ ◡ ◡ 𝐹 = 𝐹 ) | |
| 13 | 11 12 | sylib | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ◡ ◡ 𝐹 = 𝐹 ) |
| 14 | 13 | eleq1d | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ◡ ◡ 𝐹 ∈ Fin ↔ 𝐹 ∈ Fin ) ) |
| 15 | 14 | biimpac | ⊢ ( ( ◡ ◡ 𝐹 ∈ Fin ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐹 ∈ Fin ) |
| 16 | 10 15 | sylan | ⊢ ( ( ◡ 𝐹 ∈ Fin ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐹 ∈ Fin ) |
| 17 | 9 16 | sylancom | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐹 ∈ Fin ) |
| 18 | f1dom3g | ⊢ ( ( 𝐹 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐴 ≼ 𝐵 ) | |
| 19 | 18 | 3expib | ⊢ ( 𝐹 ∈ Fin → ( ( 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐴 ≼ 𝐵 ) ) |
| 20 | 17 19 | mpcom | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐴 ≼ 𝐵 ) |