This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of subset relation, see also extid , extep and the comment of df-ssr . (Contributed by Peter Mazsa, 10-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | extssr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 ] ◡ S = [ 𝐵 ] ◡ S ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brssr | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 S 𝐴 ↔ 𝑥 ⊆ 𝐴 ) ) | |
| 2 | brssr | ⊢ ( 𝐵 ∈ 𝑊 → ( 𝑥 S 𝐵 ↔ 𝑥 ⊆ 𝐵 ) ) | |
| 3 | 1 2 | bi2bian9 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝑥 S 𝐴 ↔ 𝑥 S 𝐵 ) ↔ ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵 ) ) ) |
| 4 | 3 | albidv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ( 𝑥 S 𝐴 ↔ 𝑥 S 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵 ) ) ) |
| 5 | relssr | ⊢ Rel S | |
| 6 | releccnveq | ⊢ ( ( Rel S ∧ Rel S ) → ( [ 𝐴 ] ◡ S = [ 𝐵 ] ◡ S ↔ ∀ 𝑥 ( 𝑥 S 𝐴 ↔ 𝑥 S 𝐵 ) ) ) | |
| 7 | 5 5 6 | mp2an | ⊢ ( [ 𝐴 ] ◡ S = [ 𝐵 ] ◡ S ↔ ∀ 𝑥 ( 𝑥 S 𝐴 ↔ 𝑥 S 𝐵 ) ) |
| 8 | ssext | ⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵 ) ) | |
| 9 | 4 7 8 | 3bitr4g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 ] ◡ S = [ 𝐵 ] ◡ S ↔ 𝐴 = 𝐵 ) ) |