This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of subset relation, see also extid , extep and the comment of df-ssr . (Contributed by Peter Mazsa, 10-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | extssr | |- ( ( A e. V /\ B e. W ) -> ( [ A ] `' _S = [ B ] `' _S <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brssr | |- ( A e. V -> ( x _S A <-> x C_ A ) ) |
|
| 2 | brssr | |- ( B e. W -> ( x _S B <-> x C_ B ) ) |
|
| 3 | 1 2 | bi2bian9 | |- ( ( A e. V /\ B e. W ) -> ( ( x _S A <-> x _S B ) <-> ( x C_ A <-> x C_ B ) ) ) |
| 4 | 3 | albidv | |- ( ( A e. V /\ B e. W ) -> ( A. x ( x _S A <-> x _S B ) <-> A. x ( x C_ A <-> x C_ B ) ) ) |
| 5 | relssr | |- Rel _S |
|
| 6 | releccnveq | |- ( ( Rel _S /\ Rel _S ) -> ( [ A ] `' _S = [ B ] `' _S <-> A. x ( x _S A <-> x _S B ) ) ) |
|
| 7 | 5 5 6 | mp2an | |- ( [ A ] `' _S = [ B ] `' _S <-> A. x ( x _S A <-> x _S B ) ) |
| 8 | ssext | |- ( A = B <-> A. x ( x C_ A <-> x C_ B ) ) |
|
| 9 | 4 7 8 | 3bitr4g | |- ( ( A e. V /\ B e. W ) -> ( [ A ] `' _S = [ B ] `' _S <-> A = B ) ) |